Une barriere d’abstraction explicite
pour la vérification de programmes

Paul Patault

encadré par Jean-Christophe Fillidtre et Andrei Paskevich

Novembre 2025 @ GT LVP

Y

> Laboratoir
universite Hethodes
PARIS-SACLAY Formelles

Vérification déductive 101

method Maximum(values: seq<int>) returns (max:

{

max := values[0];

for 1dx
1f max
max

<

O to |values|
values[idx] {
values[idx];

{

int)

Vérification déductive 101

method Maximum(values: seqg<int>) returns (max: int)
requires |values| > 0
ensures max 1in values

ensures forall i :: @ < i < |values| = values[i] < max

max := values[0];
for idx := 0 to |values| {
if max < values[idx] {
max := values[i1dx];

Vérification déductive 101

method Maximum(values: seqg<int>) returns (max: int)
requires |values| > 0
ensures max in values
ensures forall i :: @ < i < |values| = values[i] < max

{ ...}

— on suppose les préconditions
— on prouve les postconditions

Vérification déductive 101

method Maximum(values: seqg<int>) returns (max: int)
requires |values| > 0
ensures max in values
ensures forall i :: @ < i < |values| = values[i] < max

{ ...}

— on suppose les préconditions
— on prouve les postconditions

implémentation

client

var m := Maximum(v) ;

— on prouve les préconditions
— on suppose les postconditions

Langages intermédiaires (VCgen)

[[)afny] [Prustﬂ

p\ /J@
\l |

Boogie
[Preuve]

Langages intermédiaires (VCgen)

Preuve

[Cameleer] [Frama C]

Langages intermédiaires (VCgen)

[Dafny]| [Prusti] Creusot | Cameleer | | Frama-C |

\ //@ C\\ /{“’”“

Boogie Coma WhyML

SMT

l

[Preuve]

Coma

e « minimal »
— définition et applications de fonctions
— allocation de références
— assertions logiques

o style par passage de continuations (CPS)
— facilite I'encodage de structures de controle
— factorise le calcul de VC

e barriere d’abstraction explicite

Le langage

e = f

funm™ — €

e e

et

letrec’f m=¢edne
assert { ¢ } e

hide ¢

moe=(r:7) (f:m— L)

Barriere d'abstraction

let rec fib (n: int) (out: int — 1): L
= if n < 0 then fail () else

if n < 2 then out n else

fib (n-2) (fun x —

fib (n-1) (fun y —

out (x+y)))

Barriere d'abstraction

let rec fib (n: int) (out: int — 1): L
= hide if n < @ then fail () else

if n < 2 then out n else

fib (n-2) (fun x —

fib (n-1) (fun y —

out (x+y)))

Barriere d'abstraction

let rec fib (n: int) (out: int — 1): L
= assert { n > 0 }
hide if n < © then fail () else
if n < 2 then out n else
fib (n-2) (fun x —
fib (n-1) (fun y —
out (x+y)))

Barriére d abstraction

let rec fib (n: int) (out: int — 1): L
= let out r = assert { r = F(n) } hide out r 1in
assert { n > 0 }
hide if n < 0 then fail () else
if n < 2 then out n else
fib (n-2) (fun x —
fib (n-1) (fun y —
out (x+y)))

Barriére d abstraction

let rec fib (n: int) (out: int — 1): L
= let out r = assert { r = F(n) } hide out r 1in
assert { n > 0 }
if n < 0 then fail () else
hide if n < 2 then out n else
fib (n-2) (fun x —
fib (n-1) (fun y —
out (x+y)))

Barriére d abstraction

let rec fib (n: int) (out: int — 1): L
= let out r = assert { r = F(n) } hide out r 1in
if n < 0 then fail () else
hide if n < 2 then out n else
fib (n-2) (fun x —
fib (n-1) (fun y —
out (x+y)))

Barriére d abstraction

let rec fib (n: int) (out: int — 1): L
= let out r = assert { r = F(n) } hide out r 1in
if n < 0 then fail () else
if n < 2 then out n else
hide fib (n-2) (fun x —
fib (n-1) (fun y —
out (x+y)))

Barriere d'abstraction

let rec fib (n: int) (out: int — 1): L
= let out r = assert { r = F(n) } hide out r 1in
if n < 0 then fail () else
if n < 2 then out n else
hide fib (n-2) (fun x —
fib (n-1) (fun y —
out (x+y)))

implémentation

client

fib 42 (fun r — assert { r > 10° } halt ())

Barriere d'abstraction

let rec fib (n: int) (out: int — 1): L
= let out r = assert { r = F(n) } hide out r 1in
if n < @ then fail () else
if n < 2 then out n else
hide fib (n-2) (fun x —
fib (n-1) (fun y —
out (x+y)))

implémentation

client

fib 42 (fun r — assert { r > 10° } halt ())

(42 < 0 — false) A
(0 < 42 < 2 — 42 = F(42)) A
(Vr. r = F(42) — r > 10%)

Barriere d'abstraction

let rec fib (n: int) (out: int — 1): L
= let out r = assert { r = F(n) } hide out r 1in
if n < 0 then fail () else
if n < 2 then out n else
hide fib (n-2) (fun x —
fib (n-1) (fun y —
out (x+y)))

implémentation
VC de la fonction

YVn. not n < 0 — not n < 2 —

(n-2 < 0 — false) A
(0K N2<2 — n-2=F(n=-2)) A
(2 < N2 — Vx. x = F(n-2) —
(n-1 < 0 — false) A

(0K nN-1<2 — n-1=F(n-1)) A
(2 <n-1 —Vy.y=F(n-1) —

x +y = F(n)))

Générateur modal de conditions de vérification
A : vérification d'un appel

D : vérification d'une définition

A(assert { ¢ } e) = © N .A(e)
D(assert { ¢ } e)

A(hide) = T
D(hide e) = A(e) A D(e)

Pour plus de détails

o langage Coma

e logique de « recipes »
o calcul de VC
o le tout prouvé en LaTeX

Coma, an Intermediate Verification Language
with Explicit Abstraction Barriers

Andrei Paskevich, Paul Patault, and Jean-Christophe Filliatre*

Université Paris-Saclay, CNRS, ENS Paris-Saclay, Inria,
Laboratoire Méthodes Formelles, F-91405 Gif-sur-Yvette

Abstract. We introduce Coma, a formally defined intermediate verification lan-
guage. Specification annotations in CoMma take the form of assertions mixed with
the executable program code. A special programming construct representing the
abstraction barrier is used to separate, inside a subroutine, the “interface” part
of the code, which is verified at every call site, from the “implementation” part,
which is verified only once, at the definition site. In comparison with traditional
contract-based specification, this offers us an additional degree of freedom, as we
can provide separate specification (or none at all) for different execution paths.

‘We define a verification condition generator for Coma and prove its correctness.
For programs where specification is given in a traditional way, with abstraction
barriers at the function entries and exits, our verification conditions are similar
to the ones produced by a classical weakest-precondition calculus. For programs
where abstraction barriers are placed in the middle of a function definition, the
user-written specification is seamlessly completed with the verification conditions

ESOP (mai 2025)

actuellement — preuve de correction du VCgen en Rocqg

Pour plus de détails

Remonter les barriéres
pour ouvrir une cloture

Inférence de spécification des clétures pour
la preuve de programmes Rust avec CoOMA

Paul Patault!, Arnaud Golfouse? et Xavier Denis®

e Creusot — Coma

L2Université Paris-Saclay, CNRS, ENS Paris-Saclay, INRIA, LMF, 91190 Gif-sur-Yvette, France
*ETH Zurich, Switzerland

o utilisation de la barriere
o i n fé re n Ce d e S p éC i fi C a t i O n Dans de nombreux programmes, les clotures permettent d’exprimer de maniére

concise des transformations de données. Mais lorsqu'un outil de vérification est
utilisé, elles doivent étre accompagnées de spécifications souvent plus longues

| f que leur corps. C’est un probléme particuliérement désagréable, car ces clétures
p O u r eS e r m et u reS sont frequemment simples et leur spécification est redondante.

Dans ce travail, nous présentons un mécanisme d’inférence de spécification
des clotures pour la vérification formelle de programmes Rust. Nous proposons
I'utilisation du langage intermédiaire de vérification COMA comme backend par
l'outil de vérification déductive CREUSOT. Notre conception est capable de gérer
l'état mutable interne d'une cloture et d’inférer sa spécification. Nous utilisons
ce mécanisme pour vérifier de maniére ergonomique et modulaire une série de
programmes Rust utilisant des fonctions d’ordre supérieur.

JFLA (janvier 2025)

Creusot

let o = Some(42);

let a = o.map(
#[requires(x@ + 1 < i32::MAX@)]
#[ensures(result@ == x@ + 1)]
x| x + 1,

)

let b = o.map(
#[requires(2 * x@ > i32::MINQ@)]
#[requires(2 * x@ < i32::MAX@)]
#[ensures(result.0@ == 2 *x x@)]
#[ensures(result.l1 == x)]
x| (2 x x, x),

)3

9/9

Creusot

let o

let a

)3

Some (42);

o.map (
#[requires(x@ + 1 < i32::MAX@)]
#[ensures(result@ =

x| x + 1,

let b = o.map(

)3

#[requires(2 * x@ > i32::MINQ@)]
#[requires(2 * x@ < i32::MAX@)]
#[ensures(result.0@ == 2 *x x@)]
#[ensures(result.l1 == x)]

x| (2 % x, X),

let o

let a

let b

Some(42);

o.map(|x]| x + 1);

o.map(|x| (2 * x, x));

	Une barrière d'abstraction explicite pour la vérification de programmes
	Vérification déductive 101
	Langages intermédiaires (VCgen)
	Coma [Paskevich, Patault, Filliâtre]
	Le langage
	Barrière d'abstraction
	Générateur modal de conditions de vérification
	Pour plus de détails
	Creusot [Denis, Jourdan, Marché, Golfouse]

