
Une barrière d’abstraction explicite
pour la vérification de programmes

Paul Patault

encadré par Jean-Christophe Filliâtre et Andrei Paskevich

Novembre 2025 @ GT LVP

Vérification déductive 101

method Maximum(values: seq<int>) returns (max: int)
{
 max := values[0];
 for idx := 0 to |values| {
 if max < values[idx] {
 max := values[idx];
 }
 }
}

1 / 9

Vérification déductive 101

method Maximum(values: seq<int>) returns (max: int)
 requires |values| > 0
 ensures max in values
 ensures forall i :: 0 ⩽ i < |values| ⟹ values[i] ⩽ max
{
 max := values[0];
 for idx := 0 to |values| {
 if max < values[idx] {
 max := values[idx];
 }
 }
}

1 / 9

Vérification déductive 101

method Maximum(values: seq<int>) returns (max: int)
 requires |values| > 0
 ensures max in values
 ensures forall i :: 0 ⩽ i < |values| ⟹ values[i] ⩽ max
{ ... }

→ on suppose les préconditions
→ on prouve les postconditions

1 / 9

Vérification déductive 101

method Maximum(values: seq<int>) returns (max: int)
 requires |values| > 0
 ensures max in values
 ensures forall i :: 0 ⩽ i < |values| ⟹ values[i] ⩽ max
{ ... }

→ on suppose les préconditions
→ on prouve les postconditions

implémentation
client

var m := Maximum(v);
...

→ on prouve les préconditions
→ on suppose les postconditions

1 / 9

Langages intermédiaires (VCgen)

Gobra
Dafny Prusti

…

Boogie

SMT

Preuve

2 / 9

Langages intermédiaires (VCgen)

Gobra
Dafny Prusti

…

Boogie

SMT

Preuve

…
Cameleer Frama-C

SPARK

WhyML

2 / 9

Langages intermédiaires (VCgen)

Gobra
Dafny Prusti

…

Boogie

SMT

Preuve

…
Cameleer Frama-C

SPARK

WhyML

Creusot

Coma

2 / 9

Coma [Paskevich, Patault, Filliâtre]

• « minimal »
– définition et applications de fonctions
– allocation de références
– assertions logiques

• style par passage de continuations (CPS)
– facilite l’encodage de structures de contrôle
– factorise le calcul de VC

• barrière d’abstraction explicite

3 / 9

Le langage

𝑒 ⩴ 𝑓
| fun 𝜋 ⟶ 𝑒
| 𝑒 𝑒
| 𝑒 𝑡
| let rec?𝑓 𝜋 = 𝑒 in 𝑒
| assert { φ } 𝑒
| hide 𝑒

𝜋 ⩴ (𝑥 : 𝜏)∗ (𝑓 : 𝜋 ⟶ ⊥)∗

4 / 9

Barrière d’abstraction
let rec fib (n: int) (out: int ⟶ ⊥): ⊥

= if n < 0 then fail () else

 if n < 2 then out n else

 fib (n-2) (fun x ⟶
 fib (n-1) (fun y ⟶
 out (x+y)))

5 / 9

Barrière d’abstraction
let rec fib (n: int) (out: int ⟶ ⊥): ⊥

= hide if n < 0 then fail () else

 if n < 2 then out n else

 fib (n-2) (fun x ⟶
 fib (n-1) (fun y ⟶
 out (x+y)))

5 / 9

Barrière d’abstraction
let rec fib (n: int) (out: int ⟶ ⊥): ⊥

= assert { n ⩾ 0 }
 hide if n < 0 then fail () else

 if n < 2 then out n else

 fib (n-2) (fun x ⟶
 fib (n-1) (fun y ⟶
 out (x+y)))

5 / 9

Barrière d’abstraction
let rec fib (n: int) (out: int ⟶ ⊥): ⊥

= let out r = assert { r = F(n) } hide out r in
 assert { n ⩾ 0 }
 hide if n < 0 then fail () else

 if n < 2 then out n else

 fib (n-2) (fun x ⟶
 fib (n-1) (fun y ⟶
 out (x+y)))

5 / 9

Barrière d’abstraction
let rec fib (n: int) (out: int ⟶ ⊥): ⊥

= let out r = assert { r = F(n) } hide out r in
 assert { n ⩾ 0 }
 if n < 0 then fail () else

 hide if n < 2 then out n else

 fib (n-2) (fun x ⟶
 fib (n-1) (fun y ⟶
 out (x+y)))

5 / 9

Barrière d’abstraction
let rec fib (n: int) (out: int ⟶ ⊥): ⊥

= let out r = assert { r = F(n) } hide out r in
 if n < 0 then fail () else

 hide if n < 2 then out n else

 fib (n-2) (fun x ⟶
 fib (n-1) (fun y ⟶
 out (x+y)))

5 / 9

Barrière d’abstraction
let rec fib (n: int) (out: int ⟶ ⊥): ⊥

= let out r = assert { r = F(n) } hide out r in
 if n < 0 then fail () else

 if n < 2 then out n else

 hide fib (n-2) (fun x ⟶
 fib (n-1) (fun y ⟶
 out (x+y)))

5 / 9

Barrière d’abstraction
let rec fib (n: int) (out: int ⟶ ⊥): ⊥

= let out r = assert { r = F(n) } hide out r in
 if n < 0 then fail () else

 if n < 2 then out n else

 hide fib (n-2) (fun x ⟶
 fib (n-1) (fun y ⟶
 out (x+y)))

implémentation
client

fib 42 (fun r ⟶ assert { r > 108 } halt ())

5 / 9

Barrière d’abstraction
let rec fib (n: int) (out: int ⟶ ⊥): ⊥

= let out r = assert { r = F(n) } hide out r in
 if n < 0 then fail () else

 if n < 2 then out n else

 hide fib (n-2) (fun x ⟶
 fib (n-1) (fun y ⟶
 out (x+y)))

implémentation
client

fib 42 (fun r ⟶ assert { r > 108 } halt ())

(42 < 0 ⟶ false) ∧
(0 ⩽ 42 < 2 ⟶ 42 = F(42)) ∧
(∀r. r = F(42) ⟶ r > 108)

5 / 9

Barrière d’abstraction
let rec fib (n: int) (out: int ⟶ ⊥): ⊥

= let out r = assert { r = F(n) } hide out r in
 if n < 0 then fail () else

 if n < 2 then out n else

 hide fib (n-2) (fun x ⟶
 fib (n-1) (fun y ⟶
 out (x+y)))

implémentation
VC de la fonction∀n. not n < 0 ⟶ not n < 2 ⟶

 (n-2 < 0 ⟶ false) ∧
 (0 ⩽ n-2 < 2 ⟶ n-2 = F(n-2)) ∧
 (2 ⩽ n-2 ⟶ ∀x. x = F(n-2) ⟶
 (n-1 < 0 ⟶ false) ∧
 (0 ⩽ n-1 < 2 ⟶ n-1 = F(n-1)) ∧
 (2 ⩽ n-1 ⟶ ∀y. y = F(n-1) ⟶
 x + y = F(n)))

5 / 9

Générateur modal de conditions de vérification

𝒜 : vérification d’un appel
𝒟 : vérification d’une définition

𝒜(assert { φ } e) ≜ 𝜑 ∧ 𝒜(e)

𝒟(assert { φ } e) ≜ 𝜑 ⟶ 𝒟(e)

𝒜(hide e) ≜ ⊤

𝒟(hide e) ≜ 𝒜(e) ∧ 𝒟(e)

6 / 9

Pour plus de détails

• langage Coma
• logique de « recipes »
• calcul de VC
• le tout prouvé en LaTeX

ESOP (mai 2025)

actuellement → preuve de correction du VCgen en Rocq

7 / 9

Pour plus de détails

• Creusot → Coma
• utilisation de la barrière
• inférence de spécification

pour les fermetures

JFLA (janvier 2025)

8 / 9

Creusot [Denis, Jourdan, Marché, Golfouse]

let o = Some(42);

let a = o.map(
 #[requires(x@ + 1 ⩽ i32::MAX@)]
 #[ensures(result@ == x@ + 1)]
 |x| x + 1,
);
let b = o.map(
 #[requires(2 * x@ ⩾ i32::MIN@)]
 #[requires(2 * x@ ⩽ i32::MAX@)]
 #[ensures(result.0@ == 2 * x@)]
 #[ensures(result.1 == x)]
 |x| (2 * x, x),
);

9 / 9

Creusot [Denis, Jourdan, Marché, Golfouse]

let o = Some(42);

let a = o.map(
 #[requires(x@ + 1 ⩽ i32::MAX@)]
 #[ensures(result@ == x@ + 1)]
 |x| x + 1,
);
let b = o.map(
 #[requires(2 * x@ ⩾ i32::MIN@)]
 #[requires(2 * x@ ⩽ i32::MAX@)]
 #[ensures(result.0@ == 2 * x@)]
 #[ensures(result.1 == x)]
 |x| (2 * x, x),
);

 let o = Some(42);

 let a = o.map(|x| x + 1);

 let b = o.map(|x| (2 * x, x));

9 / 9

	Une barrière d'abstraction explicite pour la vérification de programmes
	Vérification déductive 101
	Langages intermédiaires (VCgen)
	Coma [Paskevich, Patault, Filliâtre]
	Le langage
	Barrière d'abstraction
	Générateur modal de conditions de vérification
	Pour plus de détails
	Creusot [Denis, Jourdan, Marché, Golfouse]

