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Résumé

GOSPEL est un langage logique qui permet de spécifier formellement du code OCaml. Ce lan-
gage inclut naturellement une construction match-with de filtrage par motifs. Dans ce travail, nous
présentons un algorithme pour vérifier l’exhaustivité de la construction de filtrage et une preuve
de correction de cet algorithme. Nous avons implémenté cet algorithme dans le langage GOSPEL
et pour augmenter encore notre confiance dans cette implémentation, nous avons automatisé une
génération de problèmes de filtrage de taille arbitraire. Ceci nous a notamment permis de vérifier
notre programme en utilisant le compilateur OCaml comme une implémentation de référence.

1 Introduction
Le langage GOSPEL [3] est un langage de spécification formelle pour le langage de programmation

OCaml conjointement développé entre le Laboratoire des Méthodes Formelles et l’entreprise Tarides. Per-
mettant d’annoter les interfaces OCaml, avec pour chaque fonction un contrat formel, le langage GOSPEL
est notamment utilisé pour faire de la vérification à l’exécution [6] ou de la vérification déductive [16].

Le sujet de ce stage, encadré par Jean-Christophe Filliâtre 1 et Clément Pascutto 2, est d’étendre
le langage GOSPEL en y ajoutant notamment un algorithme de vérification d’exhaustivité pour la
construction du filtrage ainsi que l’ajout des clauses when 3. Le filtrage par motifs (de l’anglais pattern
matching), est une construction fondamentale des langages de programmation fonctionnels. Permettant
de raisonner par cas, aussi bien sur la valeur d’un entier que la structure d’un type algébrique défini
par le programmeur, il s’avère intéressant d’automatiser la tâche de vérification d’exhaustivité de notre
ensemble de motifs. Retrouvez ci-dessous deux exemples de cas d’utilisation du filtrage dans le langage
OCaml :

let rec fibo = function 0 -> 0 | 1 -> 1 | n -> fibo (n-1) + fibo (n-2)
let rec mem42 = function [] -> false | 42::_ -> true | _::t -> mem42 t

Nos contributions sont l’implémentation dans GOSPEL d’un algorithme de vérification d’exhaustivité de la
construction de filtrage, une preuve de correction de cet algorithme, ainsi que la conception d’un générateur
de problèmes de filtrage de taille arbitraire (ce qui a permis de tester sérieusement l’implémentation). De
plus, nous avons ajouté les clauses when qui n’étaient pas présentes initialement dans GOSPEL et nous
avons trouvé une transformation permettant d’étendre l’algorithme d’exhaustivité pour certains filtrages
contenant des when.
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En section 2.1, nous commençons par formaliser le problème de l’exhaustivité, puis en section 2.3
nous présentons l’algorithme résolvant ce problème. Ensuite, nous faisons la preuve de correction totale
en sections 2.5 et 2.6, suivi d’une analyse de borne inférieure pour la complexité en section 2.7. Puis, en
section 2.9 nous discutons de l’implémentation concrète dans GOSPEL ainsi que des tests réalisés. Enfin,
nous présentons l’intégration dans le travail réalisé des clauses when, des problèmes posés par celle-ci et
des solutions proposées.

2 Problème du motif utile

2.1 Formalisation

Les motifs que nous traitons se déclinent sous différentes formes.

Définition 1 (Motifs). Soit M l’ensemble des motifs, décrit par la syntaxe abstraite suivante :

m ::=
| _ Attrape-tout : _

| x Variable : x

| C(m, . . . , m) Construction : C (1, _) / 42 / "tango"
| m |m Motif-ou : A | B

| m as x Motif-as : (x::s) as l

| c..c Intervalle : ’a’..’z’ / ’b’..’b’

Remarque 1. Certains de ces motifs se retrouvent souvent regroupés, en particulier dans l’algorithme
que nous allons présenter. Exemplairement, les motifs attrape-tout / variables seront toujours interchan-
geables. Remarquons aussi que les constantes (i.e. entiers, chaînes de caractères, . . .) sont analogues à des
constructeurs d’arité 0. D’un autre côté, les n-uplets sont des constructions avec pour chaque dimension
un constructeur implicite particulier (e.g. Tuple2). Enfin, les motifs-as sont toujours effacés tels que m
as x est traité comme m.

Définition 2 (Types). Les motifs peuvent être typés. Un type τ est défini par l’expression de type :

T ::= int | bool | char | list | option | . . . symbole de type
τ ::=

| α variable de type
| (τ, . . . , τ) T type paramétré

Définition 3 (Motif linéaire). On dit qu’un motif m est linéaire si toute variable apparaît au plus une
fois dans m.

Définition 4 (Motif bien typé). On dit qu’un motif m est de type τ , noté m : τ , si m est linéaire et
qu’il respecte les règles de typage suivante :

_ : τ
(Def)

x : τ
(Var)

c1..c2 : char
(Inter)

m1 : τ m2 : τ

m1 | m2 : τ
(Or)

m : τ

m as x : τ
(As)

type α⃗ T = C of τ1 × · · · × τk | . . . ∀i. i ∈ [1..k]⇒ mi : τi[α⃗/τ⃗ ]
C(m1, . . . , mk) : τ⃗ T

(Constr)
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Définition 5 (Taille d’un motif). Nous définissons la taille d’un motif par :

taille(_) = 0
taille(x) = 0

taille(c1..c2) = 1
taille(m1 | m2) = 1 + taille(m1) + taille(m2)

taille(C(m1, . . . , mk)) = 1 +
∑k

i=1 taille(mk)
taille(m as x) = 1 + taille(m)

Définition 6 (Relation de filtrage). Soit (m, m′) ∈ M ×M, on dit que le motif m filtre le motif m′,
noté m ⪯ m′, si m est plus général (ou moins précis) que m′. Cette relation peut se définir par les règles
suivantes :

_ ⪯ m
(Def)

x ⪯ m
(Var)

m ⪯ m′

m as x ⪯ m′
(As)

m ⪯ m′
1 m ⪯ m′

2

m ⪯ m′
1 | m′

2
(Or0)

m1 ⪯ m′

m1 | m2 ⪯ m′
(Or1)

m2 ⪯ m′

m1 | m2 ⪯ m′
(Or2)

c1 ≤ c′
1 c′

2 ≤ c2

c1..c2 ⪯ c′
1..c′

2
(Inter)

∀i. i ∈ [1..k]⇒ mi ⪯ m′
i

C(m1, . . . , mk) ⪯ C(m′
1, . . . , m′

k)
(Constr)

Définition 7 (Matrice de filtrage). On dit que M est une matrice de filtrage si M ∈Mm×n(M). Cette
matrice M correspond à un filtrage de m lignes sur un n-uplet en OCaml. Nous pouvons illustrer cette
correspondance par l’exemple suivant :

let f = function
| x, Nil -> 1
| Some _, Cons (42, Nil) -> 2
| _ -> 3

 x Nil
Some _ Cons(42, Nil)

_ _


Remarque 2. L’attrape-tout présent en ligne 3 du filtrage est « dupliquable » autant de fois que nécessaire
pour obtenir la bonne dimension dans la matrice.
Remarque 3. La structure matricielle est un point clé de la conception de l’algorithme que nous présen-
terons en partie 2.3. C’est pourquoi, même si l’on filtre uniquement des 1-uplets, nous utilisons cette
représentation par matrice.

Définition 8 (Matrice bien formée). Une matrice M ∈ Mm×n(M) est bien formée pour un type τ⃗ ,
noté M : τ⃗ , si et seulement si chaque ligne de la matrice est du type τ⃗ .

∀i ∈ [1..m]. ∀j ∈ [1..n]. Mi,j : τj

Mm×n : τ⃗
(Mat)

Définition 9 (Filtrage par matrice). On dit que la matrice M filtre le vecteur q⃗, noté M ⪯ q⃗, si et
seulement si chaque composante d’une même ligne de M filtre la composante correspondante dans q⃗.

∃i ∈ [1..m]. ∀j ∈ [1..n]. Mi,j ⪯ qj M : τ q⃗ : τ

Mm×n ⪯ q⃗
(Mat)

Définition 10 (Taille d’une matrice). Soit M ∈ Mm×n(M) une matrice de filtrage, la taille de M est
définie par la somme des tailles des motifs qui la compose.

taille(M) =
m∑

i=1

n∑
j=1

taille(Mi,j)

3



2.2 Problème de l’exhaustivité

Les notions d’exhaustivité et de motif utile sont exprimables dans le cadre des matrices de filtrage.

Définition 11 (Exhaustivité). Soit M ∈Mm×n(M) : τ⃗ une matrice de filtrage. Cette matrice est dite
exhaustive si et seulement si pour tout vecteur de motifs q⃗ ∈Mn : τ⃗ , il existe une ligne de M qui filtre q.
C’est-à-dire :

∀q⃗ ∈Mn. q⃗ : τ⃗ ⇒M ⪯ q⃗

Définition 12 (Motif utile). Un vecteur de motifs q⃗ ∈Mn est dit utile relativement à une matrice M ∈
Mm×n(M) si et seulement si q⃗ et M sont de même type et qu’aucune des m lignes de M ne filtre q⃗.

2.3 Résolution du problème

La question à laquelle on souhaite répondre est donc : une matrice bien formée est-elle exhaustive ?
Pour résoudre ce problème, nous utiliserons l’algorithme usefulness (Luc Maranget 2007 [13]) dont la
signature est (mat : τ) -> (vec : τ) -> bool. À partir d’une matrice de filtrage M et d’un vecteur
de motifs q, usefulness(M, q⃗) renvoie vrai si et seulement si le vecteur q⃗ est utile à M au sens de la
définition (12).

Ainsi, nous pouvons répondre à la question posée en appelant l’algorithme usefulness sur le vec-
teur q⃗ = (_, . . . , _) et la matrice testée est exhaustive si et seulement si le résultat renvoyé est faux.

Notation 1 (Arité). Nous utiliserons « |C| » pour indiquer l’arité du constructeur C.

Notation 2 (Suite de la ligne). Pour une matrice de filtrage M , nous désignerons par « taili » la i-ème
ligne, en excluant son premier élément : taili = Mi,2 · · ·Mi,n.

Nous partons d’une matrice que nous allons réduire au fur et à mesure à l’aide d’un algorithme récursif,
en raisonnant par cas sur les motifs de la première colonne. Définissons dans un premier temps deux
fonctions auxiliaires default et spec dont nous aurons besoin par la suite. Ces deux fonctions sont de
même nature : elles vont l’une comme l’autre construire une nouvelle matrice à partir de M passée en
paramètre. Ainsi, chaque ligne Mi de M est transformée en zéro, une ou plusieurs lignes selon la forme
de son premier élément Mi,1 :

Pour chaque i ∈ [1..m] faire

Mi,1 spec(C, M) default(M)

attrape-tout / variable _
1
· · · _

|C|
taili taili

C ′(a1, . . . , a|C′|)

a1 · · · a|C| taili si C = C ′

pas de ligne sinon
pas de ligne

m1 | m2 spec

(
C,

(
m1 taili

m2 taili

))
default

((
m1 taili

m2 taili

))
m as x spec

(
C, m taili) default

(
m taili)

c1..c2 (c1 ≤ C ≤ c2) taili pas de ligne

Soit Mm×n la matrice des motifs, et q⃗n le motif testé. L’algorithme usefulness(M, q⃗) est défini par :
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Cas de base Si M n’a plus de colonnes (i.e. n = 0) alors le résultat dépend du nombre de lignes. Le
vecteur q⃗ est bien filtré si et seulement si m ̸= 0.

usefulness(Mm×0, q⃗) =

vrai si m = 0

faux sinon

Induction Notons q⃗ = (q1, . . . , qn).

1. Si q1 est une valeur construite, e.g., q1 = C(a1, . . . , ak), alors la nouvelle matrice est construite ligne
à ligne par la fonction spec(C, M). Nous ferons l’appel récursif suivant :

usefulness(spec(C, M), q⃗)

2. Si q1 est une variable q1 = x ou un attrape-tout q1 = _, soit Σ = {C1, C2, . . . , Ck} l’ensemble des
constructeurs apparaissant sur la première colonne de M (dans la matrice d’exemple Σ = {Some}).
Nous dirons que cet ensemble est complet s’il contient tous les constructeurs du type de l’élément
filtré. Raisonnons par cas en fonction de cette propriété :

(a) Σ est complet, donc le constructeur de la future valeur filtrée est nécessairement un élément
de Σ. Nous nous retrouvons alors dans le cas précédent, à ceci près que nous ne connaissons
pas le constructeur filtré. Il faut donc tous les garder. Ainsi, le résultat renvoyé est :

k∨
i=1

usefulness(spec(Ci, M), spec(Ci, q⃗))

(b) Σ n’est pas complet (certains constructeurs du type courant n’apparaissent pas sur la première
colonne), nous pouvons donc traiter uniquement les lignes commençant par un attrape-tout
(ou une variable) en utilisant la seconde fonction définie plus haut. L’appel récursif sera donc :

usefulness(default(M), (q2 · · · qn))

3. Si q1 est un motif-ou, i.e., q1 = q1.1 | q1.2, alors il faut simplement renvoyer la disjonction des deux
sous-cas :

usefulness(M, (q1.1, . . . , qn)) ∨ usefulness(M, (q1.2, . . . , qn))

2.4 Exemple

Nous allons dérouler notre algorithme à la main sur l’exemple suivant :

type t = A of t | B of int | C
let f = function

| A (A t) -> 1
| A (B _) -> 2
| A C -> 3
| B x -> 4
| C -> 5

M5,1 =


A(A t)
A(B _)

A C

B x

C


On appelle donc usefulness(M, _). Comme q1 = _ et Σ est complet, on renvoie la disjonction des

trois cas suivant :

1. usefulness(
(

A t
B _
C

)
, _)

Dans ce premier cas, q1 = _ et Σ est complet, nous avons donc trois appels récursifs :
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1.1 usefulness(
(
t
)
, _)

Le premier élément de q⃗ est toujours un attrape-tout mais Σ n’est pas complet, fabriquons donc
la matrice par défaut et faisons l’appel récursif correspondant :
1.1.1 usefulness(

( )
, _)

Ici notre matrice Mm×n n’a plus de colonne : n = 0 mais m ̸= 0 donc nous renvoyons faux.
1.2 usefulness(

(
_
)
, _)

Comme les attrape-tout se comportent de façon strictement identique à des variables, ce cas se
ramène à l’appel 1.1. Après l’appel à usefulness(

( )
, _) nous renvoyons faux.

1.3 usefulness(
( )

, _)
Nous sommes dans le cas de base où la matrice n’a plus de colonnes (n = 0) mais m ̸= 0, donc
le résultat est faux.

2. usefulness(
(
x
)
, _)

Comme pour le cas 1.1, le résultat est faux.

3. usefulness(
( )

, _)
Comme pour le cas 1.3, le résultat est faux.

La disjonction des résultats des trois appels récursifs est donc fausse ce qui indique — comme nous
l’attendions — que notre filtrage est exhaustif.

2.5 Terminaison

Définition 13 (Poids d’une matrice). Soit M ∈Mm×n(M) une matrice de filtrage. On défini le poids
de M , noté poids(M), par le triplet ⟨#(motifs-ou), taille(M), n⟩. La première composante est le nombre
total de motifs-ou apparaissant dans la M . Ce triplet permet de définir une relation d’ordre lexicographique
sur les matrices de filtrage, notée ⪯.

Remarque 4. Nous utiliserons plus particulièrement la relation stricte associée, que nous noterons ≺.
Celle-ci est bien fondée car il s’agit de l’ordre lexicographique du produit de trois ordres bien fondés
(ordre usuel sur les entiers naturels).

L’algorithme usefulness(Mm×n, q⃗) étant récursif, il suffit pour prouver la terminaison de montrer
que le poids décroît strictement à chaque appel récursif.

Théorème 1. Le variant de usefulness est poids(M) : chaque appel récursif est réalisé sur une matrice
de poids plus faible que la matrice courante.

Démonstration. Raisonnons par cas en suivant la structure de l’algorithme :

Induction Un appel récursif peut être construit de deux façons, avec la matrice spécifique à un construc-
teur C obtenu par la fonction spec(C, M), ou avec la matrice par défaut default(M). Montrons que
dans les deux cas, pour la matrice M ′ ainsi construite nous aurons poids(M ′) ≺ poids(M).

Supposons donc que l’on ait :
— type t = C0 | C1 of p1 | Ca of p1 * · · · * pa,
— M : τ

— τ = (t, t, t)
Soit ⟨x, y, z⟩ le poids de M , raisonnons par cas sur la première colonne de la matrice M .
— Si Σ est complet, M peut être de la forme proposée en figure (1). Dans cet exemple, remarquons

que le motif-ou qui apparaissait en tête de la ligne 3 disparaît, donc le nombre global de x diminue.
La seconde coordonnée y ne peut que diminuer, sauf s’il y avait un motif-ou avec un constructeur
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C0 a2 · · · an

C1 x b2 · · · bn

C0 | _ a′
2 · · · a′

n

Ca (x1,. . .,xa) c2 · · · cn





a2 · · · an

a′
2 · · · a′

n

a′
2 · · · a′

n




x b2 · · · bn

_ a′
2 · · · a′

n




x1 · · · xa c2 · · · cn

_ · · · _ a′
2 · · · a′

n

 

= spec(C0, M)

= spec(C1, M)

= spec(Ca, M)

M =

Figure 1 – Forme de la matrice de filtrage lorsque l’ensemble Σ est complet.

de notre type d’un coté, ce qui engendre une duplication de ligne comme pour spec(C0, M). Enfin,
le nombre de colonnes augmente de a− 1 pour la matrice spécialisée d’un constructeur d’arité a

(un constructeur d’arité 0 va faire diminuer d’exactement 1 le nombre de colonnes).
De manière générale, si un motif-ou apparaît en première colonne, celui-ci va disparaître ce qui
engendre une diminution de la coordonnée x de notre variant. Sinon lorsqu’aucun motif-ou n’appa-
raît en première colonne, nous y retrouvons nécessairement l’ensemble complet des constructeurs
donc les matrices spécialisées sont fabriquées. Chacune d’entre elles va être de poids plus faible
que M car :
— la (ou les) ligne(s) correspondantes au constructeur en cours de spécialisation sont de taille

inférieure à leur taille initiale car le constructeur en question disparaît ;
— les lignes commençant par des variables/attrape-tout sont gardées mais n’augmentent pas la

taille, car même si l’on duplique des attrape-tout, on ne fait qu’ajouter 0 plusieurs fois ;
— les autres lignes disparaissent.
Ainsi, nous avons bien

∀i. (i ∈ {0, 1, n})⇒ poids(spec(Ci, M)) ≺ poids(M)

— Sinon, si Σ n’est pas complet nous avons deux cas :
1. La première colonne de M ne contient pas d’attrape-tout ou de variable. Dans ce cas, la matrice

par défaut construite est vide et nous avons donc bien

poids(default(M)) = e ≺ poids(M)

2. La première colonne de M contient au moins un attrape-tout (ou une variable), possiblement
sous un motif-ou, M peut être de la forme proposée en figure (2). Comme pour le cas spec,
l’ensemble des motifs-ou en tête disparaissent. Si des constructeurs sont présents, la taille
diminue d’au moins 1 pour chacun d’entre eux. Enfin, si M ne contient que des attrape-tout
et/ou variables, alors le nombre de colonnes diminue. Ainsi,

∀M. (poids(M) ̸= e)⇒ poids(default(M)) ≺ poids(M)

Conclusion Nous constatons donc bien que, quel que soit le cas, un appel récursif est par construction
réalisé sur une matrice de poids strictement plus faible que la matrice courante. Cette dernière ne fait
donc que décroître, jusqu’à atteindre le cas de base de l’algorithme usefulness.
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C0 | x x2 · · · xn

Ca (p1,. . ., pa) y2 · · · yn

_ w2 · · · wn


 x2 · · · xn

w2 · · · wn

  = default(M)M =

Figure 2 – Forme de la matrice de filtrage lorsque l’ensemble Σ est incomplet et que la première
colonne contient un attrape-tout.

Corollaire 1. L’algorithme usefulness termine.

2.6 Correction

La preuve de la correction partielle de usefulness nécessite les deux lemmes suivants.

Lemme 1. La relation de filtrage est préservée par spécialisation.

∀M ∈Mm×n(M) : τ.∀q⃗ ∈Mn : τ. q⃗ = (C(a1, . . . , ak) q2 · · · qn)⇒ (M ⪯ q⃗ ⇔ spec(C, M) ⪯ spec(C, q⃗))

Démonstration. Soient q⃗ = (C(a1, . . . , ak) q2 · · · qn) : τ et M ∈Mm×n(M) : τ .

M ⪯ q⃗ ⇔ ∃i ∈ [1..m]. ∀j ∈ [1..n]. Mi,j ⪯ qj

⇔ ∃i ∈ [1..m]. Mi,1 = C(aM
1 , . . . , aM

k ) ⪯ q1 ∧ taili ⪯ q2 · · · qn

⇔ ∀j ∈ [1..k]. aM
j ⪯ aj ∧ taili ⪯ q2 · · · qn

⇔ aM
1 · · · aM

k taili ⪯ a1 · · · ak q2 · · · qn

⇔ spec(C, M) ⪯ spec(C, q⃗)

Lemme 2. Pour toute matrice de filtrage M et vecteur de motif q⃗ de même type, si M filtre q⃗ alors la
matrice par défaut de M filtre la matrice par défaut de q⃗ :

∀M ∈Mm×n(M) : τ.∀q⃗ ∈Mn : τ. M ⪯ q⃗ ⇒ default(M) ⪯ default(q⃗)

Démonstration. Soient M ∈Mm×n(M) : τ et q⃗ = (q1 · · · qn) : τ .

M ⪯ q⃗ ⇒ ∃i ∈ [1..m]. ∀j ∈ [1..n]. Mi,j ⪯ qj

⇒ ∃i ∈ [1..m]. Mi,1 ⪯ q1 ∧ taili ⪯ q2 · · · qn

⇒ taili ⪯ q2 · · · qn

⇒ default(M) ⪯ default(q⃗)

Théorème 2. Le résultat de usefulness(M, q⃗) est vrai si et seulement si aucune ligne de M ne filtre q⃗.

Démonstration. Prouver ce théorème revient à montrer que usefulness(Mm×n, q⃗) satisfait le couple ⟨ pré-
condition, postconditions ⟩, avec « M et q⃗ sont de même type » comme précondiction et « le résultat est
vrai si M n’a plus de lignes » comme postcondition dans le cas de base (n = 0) et enfin la postconditions
dans le cas inductif (n > 0) est « Si M filtre q alors l’un des appels récursifs est réalisé sur M ′ et q′ tels
que M ′ filtre q′. ».

Raisonnons sur le code de usefulness.
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Cas de base La postcondiction correspond précisément à l’algorithme.

Induction Notons q⃗ = (q1, . . . , qn).

1. Soit q1 est une valeur construite, de constructeur C. Nous fabriquons la matrice spécialisée pour C.
Le lemme (1) nous assure donc que spec(C, M) filtre spec(C, q⃗) si et seulement si M filtre q, ce
qui conclut ce point.

2. Soit q1 est une variable ou un attrape-tout.

(a) Σ est complet (de taille k), nous construisons l’ensemble des k matrices spécialiséees. Nous
savons que si M filtre q⃗ alors exactement une des matrices spec(Ci, M) filtre spec(Ci, q⃗)
(lemme (1)) ce i-ème cas fait bien partie des k appels récursifs, la postcondition est bien
vérifiée.

(b) Σ n’est pas complet, nous construisons la matrice par défaut et le lemme (2) conclut ce cas.

3. Soit q1 est un motif-ou (q1 = q1.1 | q1.2), la postcondition inductive, est trivialement vérifiée.
Soient q⃗l = (q1.1, . . . , qn) et q⃗r = (q1.2, . . . , qn), si M filtre q⃗, alors M filtre q⃗l et q⃗r (cf. règle Or0

dans la définition de la relation de filtrage).

Conclusion Nous avons démontré la correction partielle ainsi que la terminaison, donc nous avons
prouvé la correction totale de usefulness.

2.7 Idée de complexité

type t = A | B
let f4 = function
| A,A,A,A -> 0
| B,B,B,B -> 1
| _,A,A,A -> 2
| _,B,B,B -> 3
| _,_,A,A -> 4
| _,_,B,B -> 5
| _,_,_,A -> 6
| _,_,_,B -> 7

Figure 3 – Équivalent
de la matrice f4 en OCaml

L’algorithme de clause utile est NP-complet (Ron Sekar et al., 1992 [20]).
Nous pouvons assez simplement construire une instance qui engendrera un
nombre exponentiel d’appels récursifs. Dans un premier temps, prenons une
matrice triangulaire supérieure à coefficients dans M dont les valeurs sous la
diagonale sont des _ et les autres des A (par exemple, cette matrice en dimension
2 est :

(
A A
_ A
)
). Ensuite, dupliquons une à une chaque ligne et remplaçons sur

celle-ci les A par des B. Enfin, nommons fn la matrice de taille 2n×n construite
par cette procédure.

Remarque 5. En appliquant l’algorithme usefulness naïvement sur la ma-
trice f4, nous nous retrouvons à faire 32 appels récursifs. Pour imaginer cette
croissance, il suffit de comprendre que usefulness(f4, _) va en quelque sorte
appeler usefulness(f3, _) deux fois, et récursivement jusqu’à f0. Ainsi, nous
nous retrouvons avec un arbre binaire de hauteur 5, ce qui correspond bien à
nos 32 appels observés. La figure (4) illustre la trace du premier appel en pro-
fondeur réalisé jusqu’à f0 (il s’agit de la première branche complète développée
de l’arbre).

Notation 3 (Complexité en temps). Soit A un algorithme et x son entrée. Nous noterons CTime(A(x))
la complexité en temps de l’exécution de l’algorithme A sur l’entrée x.

Théorème 3 (Complexité exponentielle). Pour tout n > 0, la complexité de usefulness(fn, (_ · · · _))
est exponentielle.

Pour démontrer le théorème (3) nous avons besoin du lemme suivant.
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Lemme 3 (Non simplification par duplication de ligne). Pour toute matrice de filtrage M , la présence de d

duplications de la première ligne dans M ne peut pas améliorer la complexité de l’algorithme usefulness.
Au contraire, si l’on duplique d fois la première ligne de M , la complexité sur la nouvelle matrice sera
au moins aussi coûteuse :

CTime(usefulness(M, _ · · · _)) ≤ CTime((usefulness(Mduplicated, _ · · · _)))

Démonstration. Soit M ∈Mm×n(M) une matrice de filtrage. Notons Md une copie de M dans laquelle
la première ligne a été dupliquée d fois, avec d ≥ 0. Remarquons que Md est de dimension (m + d)× n et
que M = M0. Montrons que la complexité de usefulness sur Md est au mieux égale, sinon pire que sur
la matrice M . Soit Pd la proposition « CTime(usefulness(M, _ · · · _)) ≤ CTime(usefulness(Md, _ · · · _)) ».
Montrons Pd par récurrence sur le code de usefulness (cette récurrence est bien fondée, nous avons en
effet prouvé en partie 2.5 que usefulness termine).

Cas de base Si M n’a plus de colonnes (i.e. n = 0) alors le résultat dépend du nombre de lignes. Nous
avons 2 cas, m = 0 et m ̸= 0, or la nullité de m est indépendante de la valeur de d. Ainsi, quelle que soit
la valeur de d, la complexité en temps est égale, donc Pd est vrai, pour le cas de base.

Induction Comme pour la définition de usefulness, notons q⃗ = (q1, . . . , qn). Ici, nous savons déjà
que q1 est un attrape-tout, nous n’avons donc qu’un seul cas parmi les trois cas de l’algorithme à traiter.

Deux sous-cas apparaissent :
1. L’ensemble des constructeurs apparaît sur la première colonne. Nous allons donc construire pour

chacun une matrice spécialisée. Cette construction est réalisée en temps linéaire pour M : il suffit
de parcourir la matrice et de sélectionner les lignes commençant par le constructeur correspondant.
Le temps est donc proportionnel au nombre de lignes présentes dans la matrice. D’autre part, pour
la matrice Md, la complexité reste linéaire mais celle-ci est affectée par les d lignes supplémentaires.
Nous passons d’un facteur de m (nombre de lignes de M) à un facteur de m + d (nombre de lignes
de Md). Nous observons donc une égalité asymptotique, mais l’inégalité Pd est vérifiée.

2. Il manque des constructeurs sur la première colonne. Dans ce cas la matrice par défaut est construite.
Comme pour le cas précédent, cette construction est réalisée en temps linéaire pour M ainsi que
pour Md, il suffit de parcourir la matrice et de sélectionner les lignes commençant par un attrape-
tout ou une variable. Le temps est proportionnel au nombre de lignes présentent dans la matrice,
ainsi nous avons un surcoût lors du traitement de Md. L’inégalité Pd est donc bien vérifiée.

Conclusion Ainsi par récurrence bien fondée sur le code de usefulness, nous avons prouvé que pour
tout d ≥ 0, la propriété Pd est vrai.



A A A A

B B B B

_ A A A

_ B B B

_ _ A A

_ _ B B

_ _ _ A

_ _ _ B


→



A A A

A A A

B B B

_ A A

_ B B

_ _ A

_ _ B


→



A A

A A

A A

B B

_ A

_ B


→


A

A

A

A

B

→
()
→ faux

Figure 4 – Trace partielle du premier appel récursif en profondeur de usefulness(f4, _ · · · _).
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Nous pouvons à partir de ce lemme prouver que le comportement de l’algorithme usefulness est
bien exponentiel sur tout entrée de la forme fn.

Démonstration. L’équation à résoudre est la suivante 4 : C(n) ≥ 2C(n− 1) + 4n. En effet, comme nous
avons seulement 2 constructeurs et que chaque colonne est complète, chaque appel récursif sera fait avec
les matrices spec(A, M) et spec(B, M) et chacune d’entre elle sera constituée d’exactement n−1 colonnes
car spec(A, M) supprime uniquement la première composante comme il s’agit de constructeurs d’arité 0
(nous avons le même comportement pour spec(B, M) qui ne supprime uniquement que la première colonne
aussi). Le facteur linéaire 4n supplémentaire correspond aux deux traversées de M pour la construction
des sous-matrices spécifiques : M a 2n lignes et nous faisons 2 fois le parcours. Enfin, remarquons que
par construction q⃗ sera toujours un vecteur d’attrape-tout.

Résolution de l’équation récursive :

C(n + 1) ≥ 2C(n) + 4(n + 1)
C(n + 1)

2n+1 ≥ 2C(n) + 4(n + 1)
2n+1

C(n + 1)
2n+1 ≥ C(n)

2n
+ n + 1

2n−1

On pose U(n) = C(n)
2n :

U(n + 1) ≥ U(n) + n + 1
2n−1

U(n + 1) ≥
n∑

i=0

i + 1
2i−1

Pour n ≥ 1 :

U(n + 1) ≥ 2
C(n + 1)

2n+1 ≥ 2

D’où,

C(n + 1) ≥ 2n+2

Conclusion Cette inégalité conclut la preuve de la possible explosion exponentielle de l’algorithme
usefulness.

Remarque 6 (Choix de la colonne). L’exemple précédent illustre bien l’impact que peut avoir l’ordre dans
lequel les colonnes sont traitées. En effet, en les prenant de gauche à droite, nous nous retrouvons à faire
32 appels récursifs, alors que si nous avions traité en premier la dernière colonne nous n’en aurions eu que
10. Ainsi, il semble que certaines configurations de matrice sont significativement meilleures que d’autres.

4. Le problème au rang n − 1 n’est pas exactement le même que celui du rang n (cf. trace partielle d’exécution illustrée
en figure (4)). Si cela avait été le même problème au rang n − 1 nous aurions eu une égalité et non une inégalité. En effet,
lors des appels récursifs sur les sous-matrices nous avons un phénomène de duplication de lignes en tête. Ainsi, grâce au
lemme (3) nous savons que si la première ligne est dupliquée un nombre arbitraire de fois, alors la complexité est au mieux
égale.
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2.8 Génération de contre-exemples

L’information de la non exhaustivité est un atout non négligeable. Cependant, un bit d’information
n’est pas toujours suffisant. Nous pouvons tout à fait imaginer un filtrage profond sur un type algébrique
complexe dans lequel il serait pénible de déceler sans aucune aide le motif manquant. Il est ainsi raisonnable
de chercher à étendre l’algorithme usefulness afin de ne plus seulement indiquer l’utilité, mais aussi
fournir un contre-exemple en cas de non exhaustivité. C’est un travail qui est par exemple réalisé par le
compilateur OCaml, qui en cas de filtrage partiel nous indique :

let f = function
| [] -> 0
| 1::t -> 1

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:

0::_

Cet algorithme est décrit dans le même article (Maranget 2007 [13]). Il s’agit d’une spécialisation
de usefulness, visant à produire le contre-exemple de motif souhaité. Appellons UCE, pour usefulness
avec contre-exemple, notre extension de usefulness. N’ayant plus le besoin de tester un motif nous ne
prenons que la matrice M en paramètre, en vue de renvoyer un contre-exemple s’il existe, et ⊥ sinon.
L’algorithme UCE est défini par :

Cas de base Si M n’a plus de colonnes (i.e. n = 0) alors comme pour usefulness, il y a deux cas de
base en fonction du nombre m de lignes :

UCE(Mm×0) =

() si m = 0

⊥ sinon

Induction
1. Soit Σ = {C1, C2, . . . , Ck} l’ensemble des constructeurs apparaissant sur la première ligne de M .

Par cas sur la complétude de Σ :
(a) Si Σ est complet, faisons pour tout Ci ∈ Σ l’appel UCE(spec(Ci, M)). Observons deux cas :

— dès que l’un de ces appels rend un vecteur de motifs (a1 · · · a|Ck| m2 · · ·mn), le résultat est
ce même vecteur dans lequel les |Ck| premiers éléments seront réunis sous le constructeur Ck,
c’est-à-dire le vecteur (Ck(a1 · · · a|Ck|) m2 · · ·mn).

— l’ensemble de ces appels renvoient la valeur ⊥ alors le résultat de UCE(M) est aussi ⊥.
(b) Si Σ n’est pas complet, nous devons seulement faire un appel récursif sur la matrice par défaut

de M . Comme pour le cas précédent, si UCE(default(M)) = ⊥ alors UCE(M) = ⊥. Sinon
si UCE(default(M)) = (m2 · · ·mn) alors le résultat est dépendant de Σ :

UCE(M) =

(_ m2 · · ·mn) si Σ = ∅

(C(_1 · · · _|Ck|
) m2 · · ·mn) sinon, avec C ̸∈ Σ

2.9 Implémentation

Nous avons donc implémenté cet algorithme usefulness à l’intérieur du code de GOSPEL. Un appel à
cette fonction est donc fait au cours du typage de la spécification logique pour chaque endroit où se trouve
un filtrage. Nous avons décidé de lever une erreur lorsqu’une construction de filtrage non exhaustive est
détectée. En revanche, la présence de redondance ne fait que déclencher un avertissement. L’ensemble du
code peut être retrouvé sur la page GitHub du projet GOSPEL 5.

5. https://www.github.com/ocaml-gospel/gospel
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2.9.1 Tests

Pour vérifier l’absence de bogues dans l’implémentation nous avons conçu minipat, un langage
exclusivement dédié au filtrage. Ceci nous a permis de tester notre implémentation contre celle d’OCaml
en tant qu’implémentation de référence sur des problèmes de filtrage arbitrairement longs. Ce langage
étant compatible avec OCaml, il suffit de trouver une façon de générer des motifs afin de comparer
les résultats donnés par notre algorithme et le compilateur OCaml, pour nous indiquer d’éventuelles
incohérences.

Générateur de fichiers types Pour la génération de fichiers compilables, deux étapes sont requises
(la troisième étant optionnelle) :

1. génération d’un type algébrique ;

2. génération de motifs formant un filtrage exhaustif relativement au type défini en (1) ;

3. optionnel : casser l’exhaustivité pour avoir des tests négatifs.

Génération aléatoire d’un type algébrique Un type OCaml t peut être défini par une liste
d’association « constructeur → arguments ». Leur génération aléatoire est relativement simple. Il suffit
de fixer le nombre de constructeurs (donner à chacun un identifiant différent, par exemple prendre les
lettres l’alphabet dans l’ordre), puis de tirer aléatoirement l’arité de chacun. Ensuite, choisir au hasard le
type de chaque argument dudit constructeur parmi un ensemble T défini en amont. Cet ensemble peut
par exemple valoir 6 :

Tt = {int, string, t}

Génération aléatoire d’un filtrage exhaustif pour un type donné Soit t un type, tel que :

type t = C1 of t1,1 · · · t1,|C1| | · · · | Cn of tn,1 · · · tn,|Cn|

Nous pouvons fabriquer un filtrage OCaml exhaustif avec l’algorithme Falea. Ce dernier a trois
paramètres : deux entiers max_depth et max_rows, et le type t du filtrage que l’on veut construire. Le
retour de Falea est une liste de motifs formant un filtrage exhaustif et bien typé pour t. Ce filtrage contient
au plus max_rows lignes et chaque motif a une profondeur au plus max_depth. L’algorithme Falea est
defini récursivement de la manière suivante :

Cas de base (1) Si t est un type de base (i.e. int, string, char), soit k un entier tiré au hasard
entre 1 et max_rows − 1, construire k valeurs différentes du type t et renvoyer cette liste, suivie d’un
attrape-tout. Le résultat est donc [ v1, . . ., vk, _ ], où tout vi est de type t.

Cas de base (2) Si max_depth = 0, renvoyer la liste singleton ne contenant qu’un attrape-tout,
notée [ _ ].

Cas de base (3) Si max_rows = 1, renvoyer [ _ ].

6. Où t est le nom du type lui-même, ce qui permettra d’introduire de la profondeur dans les motifs générés.
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Induction Nécessairement, t est un type algébrique (défini par l’utilisateur).
— Si |t| > max_rows alors renvoyer [ _ ].
— Sinon |t| ≤ max_rows, soit k = ⌊ max_rows

|t| ⌋. Pour tout Ci, générer une liste exhaustive de motifs
pour chacun de ses j arguments (pour j ∈ [1..|Ci|]) avec l’appel Falea(max_depth - 1, k, ti,j).
Une fois ces |Ci| appels réalisés, faire le produit cartésien des listes obtenues et leur appliquer le
constructeur Ci. Si la taille de ce produit cartésien dépasse k, ne conserver que k − 1 des motifs
et ajouter un motif Ci(_,...,_). Nous avons donc généré pour chaque Ci un nombre de lignes
inférieur ou égale à k. Enfin, renvoyer la liste des i listes concaténées.

Remarque 7. Pour ajouter de l’aléa dans cette construction, nous pouvons :
— faire un mélange (par exemple Knuth [10]) sur la liste une fois construite ;
— sélectionner certaines des lignes aléatoirement pour en faire des motifs-ou ;
— ajouter un quatrième cas de base qui se déclenche de manière aléatoire (par exemple avec proba-

bilité 1
4 ) et qui comme les autres renvoie [ _ ] mais sans condition.

Exemple d’exécution Illustrons le fonctionnement de cet algorithme en déroulant un exemple d’exé-
cution à la main. Supposons que l’on fasse l’appel :

Falea(max_depth = 1, max_rows = 10, type t = A of int * t * char | B of int)

On rentre directement dans le sinon du cas inductif, nous avons k = 10
2 = 5.

— Pour A :
— Pour int, nous faisons l’appel Falea(0, 5, int). Nous rentrons dans le cas de base (1),

supposons k = 2, nous avons deux entiers à construire, nous renvoyons donc par exemple la
liste [ 1, 0, _ ].

— Pour t, nous faisons l’appel Falea(0, 5, t). Nous rentrons dans le cas de base (2) donc le
résultat est [ _ ].

— Pour char, nous faisons l’appel Falea(0, 5, char). Nous rentrons dans le cas de base (1),
supposons k = 2, nous avons deux caractères à construire, nous renvoyons donc par exemple
la liste [ ’p’,’a’,_ ].

Après les trois sous-appels récursifs nous récupérons trois listes dont nous devons faire le produit
cartésien pour fabriquer les lignes à renvoyer (chacune sous le constructeur A), ce qui nous donne :

[ [A(1,_,'p' )]; [A(1,_,'a' )]; [A(1,_,_)];
[A(0,_,'p' )]; [A(0,_,'a' )]; [A(0,_,_)];
[A(_,_,'p' )]; [A(_,_,'a' )]; [A(_,_,_)] ]

Comme nous ne voulons que 5 lignes, nous gardons les quatre premières et la dernière, ce qui nous
donne :

[ [A(1,_,'p' )]; [A(1,_,'a' )]; [A(1,_,_)];
[A(0,_,'p' )]; [A(_,_,_)] ]

— Pour B :
— Pour int, nous faisons l’appel Falea(0, 10, int). Nous rentrons dans le cas de base (1),

supposons k = 1, nous avons un entier à construire, nous renvoyons donc par exemple la
liste [ 5, _ ].

Nous mettons simplement ce résultat sous le constructeur B et on le renvoie : [ B 5 ; B _ ].
Enfin, la concaténation résultante est :

[ [A(1,_,'p' )]; [A(1,_,'a' )]; [A(1,_,_)];
[A(0,_,'p' )]; [A(_,_,_)]; [B 5]; [B _] ]

Remarquons que cette liste de motifs forme bien un filtrage exhaustif pour le type t.
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Cassage de l’exhaustivité Pour casser l’exhaustivité d’une liste de motifs, il suffit de supprimer
quelques lignes bien choisies.

Automatisation de la vérification Le langage minipat étant compatible avec OCaml, nous pouvons
comparer notre implémentation de usefulness contre le compilateur OCaml. En effet, la compilation
d’un fichier contenant un filtrage non exhaustif avec la commande 7 ocamlc -w -11-12 -warn-error
+8, échoue avec le code 2. Il suffit donc de programmer le même comportement dans minipat afin de
vérifier la correspondance. Cette phase de tests a permis de trouver un certain nombre de bogues dans
l’implémentation de l’algorithme usefulness. Générant des filtrages arbitrairement longs, larges et/ou
profonds, nous avons pu vérifier que l’implémentation était correcte sur un grand nombre de tests 8. Le
code de ce générateur peut être retrouvé en suivant ce lien 9.

2.10 Clauses when

Dans le langage OCaml, la construction de filtrage par motifs admet l’ajout optionnel de clauses when.
Ces clauses sont des gardes permettant d’ajouter une conditionnelle sur certaines lignes de notre filtrage 10.
Une ligne comprenant un when est dite gardée. Les gardes permettent d’exprimer des conditions que les
motifs ne capturent pas, par exemple les deux fonctions suivantes sont strictement équivalentes mais nous
pouvons trouver que la seconde est plus élégante :

let pair_eq = function
| x, y -> if x = y then 1 else 0
| _ -> assert false

let pair_eq_when = function
| x, y when x = y -> 1
| _ -> 0

2.10.1 Exhaustivité avec les clauses when

Les clauses when ajoutent un niveau de difficulté à notre vérification d’exhaustivité du filtrage. Pour
résoudre ce problème, une simple transformation du code peut être réalisée en amont afin de se ramener
à un cas compatible avec l’algorithme usefulness. Celle-ci est inspirée de la transformation proposée
par John Reppy et al. [17]. Ainsi, pour chaque occurrence de when nous ajoutons une colonne remplie
d’attrape-tout à la matrice sauf pour la ligne gardée correspondante pour laquelle il faut mettre le booléen
true. Par exemple, le code OCaml suivant va donner la matrice :

let f = function
| A x, 42, y when x = y -> 1
| B, 5, _ -> 2
| C a, b, c when a + c = y -> 3

→

 A x 42 y true _
B 5 _ _ _

C a b c _ true


Théorème 4. Soient Mg ∈ Mm×n(M) une matrice de filtrage gardée (avec g lignes gardées), w⃗ =
(w1, . . . , wg) le vecteur des gardes (avec g ≤ n) et Mt ∈ Mm×(n+g)(M) la matrice dé-gardée à partir
de Mg en suivant la procédure indiquée. Si Mt est exhaustive, alors Mg l’est aussi.

Démonstration. Comme Mt est exhaustive, alors pour tout q⃗t, Mt filtre q⃗t. Montrons ∀q⃗g. Mg ⪯ q⃗g.
Soit q⃗g un vecteur de motifs. On construit un vecteur q⃗t en ajoutant à q⃗g les g booléens construits de la

8. Plus de 10 000 problèmes générés soit environ 500 000 lignes de filtrage.
9. https://www.github.com/paulpatault/minipat
9. L’option -w permet d’ajouter/supprimer des avertissements, les codes 11 et 12 correspondent à la redondance et le -

indique leur suppression. De plus l’option -warn-error permet de transformer les avertissements en erreurs et 8 est le code
de l’exhaustivité.

10. Attention, contrairement à d’autres langages ML, une seule clause when n’est autorisée par ligne, et celle-ci s’applique
à tous les motifs de la ligne.
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manière suivante. L’élément bj est défini tel que si (Mg)j filtre q⃗g alors bj ← wj et sinon bj ← true. Par
hypothèse, Mt filtre q⃗t donc il existe une ligne i telle que (Mt)i filtre q⃗t. Montrons que (Mg)i filtre q⃗g. Si
il y a une garde j sur la ligne i, alors le booléen bj a la valeur true (par définition de la matrice Mt) et
donc la garde wj est vraie et la ligne i de Mg filtre bien q⃗g. Sinon, il n’y a pas de garde sur la ligne i

et (Mt)i filtre q⃗t signifie exactement que (Mg)i filtre q⃗g car les n premières colonnes de Mt et Mg sont
identiques.

Remarque 8. La réciproque du théorème (4) n’est en revanche pas vraie. En effet, prenons un simple
exemple :

let f = function
| x, y when x = y -> 0
| x, y when x < y -> -1
| x, y when x > y -> 1

→

 x y true _ _
x y _ true _
x y _ _ true


Dans ce cas, l’application de l’algorithme usefulness nous informe que le filtrage n’est pas exhaustif,

nous donnant même le contre-exemple (_, _, false, false, false). Or, une « simple » analyse des
gardes peut prouver que ce cas n’est pas atteignable. Le problème est que cette analyse n’est pas toujours
réalisable statiquement. Il suffit en effet d’introduire une expression suffisamment compliquée (i.e. appel
de fonction, boucle while ou encore déclaration let rec) pour rendre indécidable notre problème. Il
s’agit du théorème de Rice [18]. Ainsi, lorsque l’algorithme usefulness nous indique que le filtrage testé
n’est pas exhaustif, nous ne pourrons seulement dire « ce filtrage peut ne pas être exhaustif ».

Bien que le problème soit indécidable, nous pouvons trouver dommage que dans des cas si simples
aucune tentative ne soit réalisée. Nous pourrions tenter une vérification automatique de la complétude
des clauses when. En effet, il est possible de produire des obligations de preuve relatives à la complétude
des cas, à la manière du comportement induit par les behaviors du langage logique ACSL [2]. Certaines
de ces obligations de preuves ainsi générées peuvent être prouvées automatiquement par un solveur SMT
dans un certain nombre de cas. Le but généré par l’exemple précédent serait goal g: forall x, y :
int. x = y or x < y or x > y et il est trivialement prouvé par Alt-Ergo [4].

2.10.2 Motifs-ou gardés

Gabriel Scherer et al. [19] ont décelé un cas ambigu dans la construction du filtrage. Prenons la simple
fonction définie par filtrage :

let f = function
| x, _ | _, x when x = 0 -> true
| _ -> false

Ici, le programmeur s’attend à ce que les résultats de f sur (1,0) et (0,1) soient les mêmes, valant
tout les deux true. Or ce n’est pas le cas. La subtilité réside dans le fait que l’on retrouve dans ce
filtrage un motif-ou sur une ligne contenant un when et que les paires (1,0) et (0,1) peuvent être filtrées
par les deux côtés de ce motif-ou. La différence se trouve donc dans l’affectation de la variable x. La
sémantique du langage OCaml est claire sur ce point : si un motif-ou se trouve sur une ligne alors le
premier sous-motif filtrant le paramètre est utilisé pour l’affectation des variables. Dans notre cas les
paires pouvant être filtrées par le motif de gauche (x,_), l’affectation correspondante est nécessairement
appliquée et si l’évaluation de la clause when n’est pas satisfaite alors nous passons directement à la
prochaine ligne (sans tester les autres affectations). Ainsi, les valeurs de nos exemples sont f (1,0) =
false et f (0,1) = true. Pour pallier cette ambigüité, nous avons choisi d’interdire dans GOSPEL une
telle construction. Une erreur est donc levée lorsqu’un motif-ou se trouve sous une ligne gardée.
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3 Revue de la littérature
Construction historique des langages ML, le filtrage par motifs envahit le monde des langages de

programmation généralistes depuis plusieurs années. Nous pouvons en effet retrouver cette construction
en Rust [9] ou en Scala [15], mais aussi en Python [11] depuis la récente version 3.10. La compilation
efficace du filtrage est un problème bien documenté, étant étudié depuis les années 80, dont le précurseur
est Lennart Augustsson [1]. Dans ce contexte de langages de programmation, la compilation est le point à
développer. Ainsi, Luc Maranget a travaillé la question d’efficacité de la compilation du filtrage [14], mais
a aussi proposé un algorithme de détection de non-exhaustivité pour le match-with d’OCaml [12, 13].
Cependant, bien que produire un avertissement lorsqu’un filtrage n’est pas exhaustif rend service au
programmeur cela n’est pas une nécessité : au pire le programme échouera avec une sortie du type
Match_failure. En revanche dans le cadre d’un langage logique, nous avons du mal à définir le sens
d’un filtrage non exhaustif. L’utilisation d’un tel algorithme est donc indispensable. De plus, nous nous
sommes inspirés du travail de John Reppy et Mona Zahir [17], proposant une transformation de la matrice
de filtrage pour incorporer la compilation des clauses when dans le cas général.

D’autre part, plusieurs langages de spécification formelle sont munis d’une construction plus ou moins
proche du filtrage de GOSPEL. Par exemple, le langage ACSL développé par Patrick Baudin et al. [2], le
langage WhyML développé par Jean-Christophe Filliâtre et Andrei Paskevich [7] et le langage VeriFast
développé par Bart Jacobs et al. [8]. En effet, le langage ACSL propose une manière de raisonner par
cas à l’aide de behaviors. De plus, une construction de filtrage polymorphe semble être en cours de
développement, mais reste non intégré au noyau Frama-C [5] et mal documentée à l’heure actuelle. Pour
le langage WhyML, la notion de filtrage existe dans la logique et la vérification d’exhaustivité est réalisée
au typage. Cependant, l’algorithme implémenté est adapté d’un algorithme de compilation du filtrage
et n’est pas le même que celui que nous avons choisi ici. Ceci conduit à une vérification d’exhaustivité
plus efficace dans GOSPEL que WhyML. Enfin, le langage VeriFast contient une construction switch
mais celle-ci n’autorise aucun motif profond (pas de motifs-ou ni de motifs imbriqués par exemple).
Cette construction est donc significativement moins expressive que le filtrage à la ML que nous avons
implémenté ici.

4 Conclusion et perspectives
Dans un premier temps, nous avons vu comment le problème de l’exhaustivité du filtrage peut être

résolu grâce à l’algorithme usefulness. Nous l’avons implémenté et étendu aux clauses when dans le
code de GOSPEL. Ensuite, nous nous sommes bien assurés de la correction de usefulness, aussi bien
d’un point de vue théorique avec les preuves de correction et terminaison que d’un point de vue pratique
avec cette grande phase de vérification de correspondance avec les résultats du compilateur OCaml utilisé
comme oracle sur des tests aléatoires.

Nous pourrions d’une part prolonger ce travail en effectuant une analyse approfondie sur la présence
d’éventuelle redondance dans les sous-motifs d’un filtrage en suivant notamment la piste proposée par
Luc Maranget [12, 13]. D’autre part, l’usage de solveur SMT pour permettre une plus fine analyse des
clauses when est aussi une piste intéressante, car elle pourrait permettre parfois d’écrire un filtrage plus
élégant.

Je remercie très sincèrement mes encadrants de stage, Jean-Christophe et Clément pour le temps
qu’ils m’ont accordé et pour tout l’intérêt qu’ils ont porté à ce travail. Je remercie également les membres
de l’équipe Toccata pour leur accueil sympathique et chaleureux.
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