
LATEX TikZposter

PATTERN MATCHING :
EXHAUSTIVE TESTS FOR EXHAUSTIVENESS CHECK
Paul Patault

Univ. Paris-Saclay, Laboratoire Méthodes Formelles — M1 internship supervised by Jean-Christophe Filliâtre

PATTERN MATCHING :
EXHAUSTIVE TESTS FOR EXHAUSTIVENESS CHECK
Paul Patault

Univ. Paris-Saclay, Laboratoire Méthodes Formelles — M1 internship supervised by Jean-Christophe Filliâtre

Context
– OCaml :

↰

ML family programming language

↰

combine functional, imperative and object-oriented aspects
– Gospel [1] :

↰

formal specification language for OCaml

↰

first-order logic

↰

separation logic based semantics

Pattern matching

– idiomatic in functional languages, heavily used in OCaml
– pattern-based structural reasoning over algebraic data types

pat ::= x | v | C (pat,. . .,pat) | (pat | pat) | . . .

type tree = E | N of tree * int * tree

let rec min = function
| E -> None
| N (E, x, _) -> Some x
| N (l, _, _) -> min l

let compare = function
| [], [] | E :: _, E :: _ -> 0
| _, [] | N _ :: _, _ -> 1
| [], _ | _, N _ :: _ -> -1

Problems
Exhaustiveness: are all cases considered?
A pattern matching P is exhaustive if and only if every possi-
ble (well typed) value is filtered by P. Thus, the function h is
exhaustive, but h’ is not.

let rec h = function let h' = function
| E -> 0 | E -> 0
| N(E, _, _) -> 1 | N(E, _, _) -> 1
| N(l, _, _) -> 1 + h l

Redundancy: is a pattern subsumed by the previous
ones?
A pattern matching is redundant if and only if a line i is less
general than a line j where i < j. Thus, the function h is re-
dundant, but h’ is not.

let h = function let h' = function
| _ -> false | E -> true
| E -> true | _ -> false

An algorithm
The usefulness algorithm, developed by Luc Maranget [2],
solves both problems. A function

is_useful : pat list → pat → bool
decides whether a pattern filters more values than a given
list of patterns.
– exhaustiveness: is x useful to the whole pattern matching?
– redundancy: is every pattern useful to its predecessors?

Contributions
– termination and correctness proof
– well-tested implementation into Gospel code base

↰

with counter-example generation

↰

with when clauses
– general purpose pattern matching generator

Proofs
– Complexity: proof that the execution time may be exponen-
tial in the number of lines of the pattern-matching.

– Termination: the hard part was findind the variant for
is_useful, since or-patterns increase the size of the pat-
terns in recursive calls.

– Correctness: by induction over the code of is_useful.

Implementation

– implementation of is_useful in Gospel
– extensions:

↰

handles when clauses
function Some x when x > 0 -> x | _ -> 42

↰

generates counter-examples
– about 1,000 lines of code

Tests design

– Design and implementation of a highly customisable and
randomised test generator [3].

– Consistency tests over 10,000 generated problems, which
represent a total of ∼ 500,000 lines of pattern-matchings.

generator

[options]

npat

ntypes

depth

rows

gospel

seed

tuple

shuffle

orpat

pwhen

...

foo.ml

ocamlopt -c
-warn-error +8+11

error 8
not exhaustive

error 11
redondant

OKis_useful

References

[1] Arthur Charguéraud et al. “GOSPEL—providing OCaml with a formal specification language”. In: International Symposium on Formal Methods.
Springer. 2019, pp. 484–501.
[2] Luc Maranget. “Warnings for pattern matching”. In: Journal of Functional Programming 17.3 (2007), pp. 387–421.
[3] Paul Patault. Minipat, a randomised pattern matching generator. July 2022. url: https://www.paulpatault.fr/minipat.

Contact: paul.patault@universite-paris-saclay.fr

