
Boucler la boucle du parcours de Morris

Arnaud Golfouse1 et Paul Patault1

1Université Paris-Saclay, Laboratoire Méthodes Formelles, Gif-sur-Yvette, France

L’algorithme de Morris parcourt un arbre mutable en temps linéaire et en
espace constant. L’arbre est modifié au cours de l’itération, mais restauré au fur
et à mesure. Nous en proposons une preuve avec Creusot, un outil de vérification
déductive de programme Rust.

1 Introduction
Le système de types de Rust est basé sur la notion de possession. Le langage est capable

d’assurer une utilisation sûre des pointeurs, qu’ils soient mutables ou non, sans avoir de
ramasse-miettes. Grâce à son vérificateur d’emprunt, le compilateur peut traquer stati-
quement si les pointeurs sont partagés, empruntés, pleinement possédés, ou rendus. Ce
vérificateur est partie intégrante du typage de Rust et vérifie que la propriété « partage XOR
mutation » est invariante. Cette propriété capture une très grande partie des erreurs faites
par les programmeurs. Cependant, cela limite significativement le code qu’il est possible
d’écrire. Par exemple, il est impossible de créer toute structure cyclique et mutable.

Pour pallier ces limites, le langage permet aussi une utilisation dite unsafe de pointeurs 1.
Dans un bloc annoté, le programmeur a accès à des pointeurs spéciaux (appelé pointeurs
bruts) pour lesquels la vérification n’est pas effectuée. Ces blocs sont utiles dans deux cas
de figure. Il est possible que la propriété « partage XOR mutation » soit vraie, mais que le
raisonnement y conduisant soit trop complexe pour être mené par le vérificateur d’emprunts.
Autrement, la propriété peut être volontairement cassée lorsque le programmeur souhaite
écrire une structure impossible à représenter (e.g., listes chainées mutables) : c’est le cas ici.

L’algorithme de Morris [Mor79] est un parcours d’arbre binaire mutable qui s’exécute
en temps linéaire et en espace constant. Au cours de l’exécution, certains pointeurs sont
modifiés, ce qui a pour conséquence de détruire la structure d’arbre en introduisant des
cycles. Dans ce travail, nous proposons une vérification formelle d’une implémentation de ce
parcours en Rust. Nous comprenons dès à présent une des difficultés : il s’agit de vérifier
formellement un programme nécessairement unsafe.

Pour la preuve, nous utilisons Creusot [DJM22], un outil de spécification et vérification
déductive pour Rust. Il s’appuie sur Coma [PPF25, PGD25], un langage intermédiaire pour
la vérification, lui-même basé sur la plateforme de preuve de programmes Why3 [BFM+11].
Ce dernier offre une interface avec de nombreux prouveurs SMT auxquels sont envoyées les
conditions de vérifications calculées. Ainsi, du point de vue de l’utilisateur de Creusot, la
vérification est majoritairement automatique.

L’intégralité du code Rust et de la preuve Creusot sont disponibles à l’adresse https:
//doi.org/10.5281/zenodo.17914344.

1. Il est également possible d’utiliser le mécanisme de mutabilité intérieure. Ces deux mécanismes étant
traités de la même manière par Creusot, nous ne parlerons pas de ce dernier.

JFLA 2026 – 37es Journées Francophones des Langages Applicatifs

https://doi.org/10.5281/zenodo.17914344
https://doi.org/10.5281/zenodo.17914344

Boucler la boucle du parcours de Morris Golfouse et Patault

2 Algorithme de Morris
L’algorithme de Morris [Mor79] est un parcours infixe d’arbre binaire mutable. Il s’exécute

en espace constant grâce à des modifications temporaires de l’arbre. Pendant le parcours,
certaines feuilles sont modifiées : le nœud le plus à droite d’un sous-arbre gauche peut pointer
vers le parent de ce sous-arbre. Cela permet de retrouver à quel endroit il faut continuer
l’itération une fois ce sous-arbre traité. Dans cette section, nous omettons les annotations
unsafes de blocs, car ils le sont tous.

Pour représenter les arbres, nous utilisons le type :

pub struct Tree<T> { root: *const Node<T> }

où *const est le type de pointeur brut et Node est le type privé définissant les nœuds de
l’arbre.

struct Node<T> {
value: T,
left: *const Node<T>,
right: *const Node<T>,

}

Ici, value est la valeur portée par un nœud. Si le nœud a un fils gauche (resp. droit), left
(resp. right) est un pointeur vers celui-ci, sinon il est nul.

Le programme que nous vérifions est légèrement différent de l’algorithme de Morris original.
Il s’agit d’une variante dans laquelle nous inversons le contrôle. Au lieu d’effectuer l’itération
complète d’un coup, nous programmons un générateur. Son état est représenté par le type
TreeIter et se construit de la manière suivante :

pub struct TreeIter<T> {
curr_ptr: *const Node<T>,

}
pub fn iter<T>(t: Tree<T>) -> TreeIter<T> {

TreeIter { curr_ptr: t.root }
}

La fonction iter doit prendre possession complète de l’arbre. En effet, en modifiant certains
pointeurs, l’algorithme de Morris casse nécessairement la structure d’arbre au cours de
l’itération. Ainsi, si cette dernière est interrompue prématurément, alors l’arbre se retrouverait
dans un état incohérent.

Un pas d’itération est effectué avec la fonction next, de signature :

pub fn next<T>(t: &mut TreeIter<T>) -> Option<&mut T>

Sa définition commence par un simple test. Si le pointeur t.curr_ptr est nul, le résultat
renvoyé est None, car le parcours est terminé.

if t.curr_ptr.is_null() {
return None;

}

La prochaine étape du calcul consiste à déterminer si le sous-arbre gauche a déjà été visité.
Le cas échéant, nous renvoyons la valeur de la racine et décalons notre itérateur à droite.
Autrement, il faut visiter le sous-arbre gauche.

if left_done {
let res = &(*t.curr_ptr).value;
t.curr_ptr = (*t.curr_ptr).right;
Some(res)

} else {
t.curr_ptr = (*t.curr_ptr).left;
next(t)

}

JFLA 2026 – 37es Journées Francophones des Langages Applicatifs

Boucler la boucle du parcours de Morris Golfouse et Patault

Pour calculer left_done, nous devons chercher pred_ptr, le nœud le plus bas à droite du
sous-arbre gauche dans l’arbre d’origine. En effet, le champ pred_ptr.right est nul si et
seulement si nous n’avons pas encore visité le sous-arbre gauche.

S’il est nul, left_done est faux, et nous introduisons une boucle arrière. Pour ce faire,
pred_ptr.right est modifié pour pointer vers t.curr_ptr. Cela permet de retrouver la
racine après la visite du sous-arbre gauche.

Sinon, pred_ptr.right (nécessairement égal à t.curr_ptr) est une boucle arrière précé-
demment posée — ce qui indique que le sous-arbre gauche de t.curr_ptr est déjà visité.
Dans ce cas, la condition left_done est vraie.

let left_done = (*t.curr_ptr).left.is_null() || {
let mut pred_ptr = (*self.curr_ptr).left;
loop {

if (*pred_ptr).right.is_null() {
// installation de la boucle
(*(pred_ptr as *mut Node<T>)).right = self.curr_ptr;
break false;

}
if (*pred_ptr).right == self.curr_ptr {

// élimination de la boucle
(*(pred_ptr as *mut Node<T>)).right = std::ptr::null();
break true;

}
pred_ptr = (*pred_ptr).right;

}
};

Ceci conclut la définition du générateur next, dont la vérification est l’objet de la section 3.
Pour illustrer l’algorithme, nous présentons en figure 1 un exemple d’exécution. La racine

de l’arbre est le nœud de valeur 8. Le pointeur de l’état du générateur (t.curr_ptr) est
représenté par le triangle rouge. Les nœuds encadrés en vert ont été visités. Les pointeurs left
et right de chaque nœud sont les flèches pleines (omises lorsque le pointeur est nul). Enfin,
les boucles arrière sont les flèches pointillées. L’étape précédant la première case illustrée est
la suivante : t.curr_ptr pointe sur le nœud 3, qui n’a pas de fils gauche, nous le visitons
avant de passer à son sous-arbre droit — qui se trouve être un parent, mais nous ne le savons
pas encore.

⊞■ Le nœud 4 ayant un fils gauche, nous devons installer (ou détecter la présence d’) une
boucle arrière. Celle-ci étant déjà présente, nous concluons que le sous-arbre gauche
a été visité. Il faut retirer la boucle, renvoyer 4, et passer au sous-arbre droit pour
l’appel suivant.

⊞■ Le nœud 6 ayant un fils gauche, nous devons installer (ou détecter la présence d’) une
boucle arrière. Une fois mise en place, nous visitons le sous-arbre gauche.

⊞■ Le nœud 5 n’a pas de fils gauche, nous le visitons et descendons à droite.
⊞■ Similaire à ⊞■ .

3 Preuve
Nous prouvons la correction de l’algorithme de Morris avec Creusot, un outil de vérification

déductive pour Rust.
La spécification principale est la postcondition de la fonction next :

#[ensures(match result {
None => (*t)@ == Seq::empty() && *t == ^t,
Some(x) => (*t)@ == (^t)@.push_front(*x),

})]

JFLA 2026 – 37es Journées Francophones des Langages Applicatifs

Boucler la boucle du parcours de Morris Golfouse et Patault

Figure 1. Quatre pas d’étape du parcours.

Cette formule s’écrit dans le langage logique de Creusot. La variable result correspond
à la valeur de retour de la fonction. L’opérateur postfixe @ permet de récupérer le modèle
logique de son paramètre. Nous définissons, sur le type de t, ce modèle logique comme étant
la séquence des éléments qu’il reste à visiter dans l’ordre infixe. L’opérateur * récupère la
valeur de t au début de l’exécution de la fonction. Et l’opérateur ^ récupère la valeur de t
au moment où l’emprunt initial est rendu, après l’exécution de la fonction.

Si la valeur de retour est None, le parcours de l’arbre est terminé : la séquence des éléments
à parcourir est vide, et t n’est pas modifié par la fonction. En revanche, si result est de la
forme Some(x), alors x était le prochain élément à visiter. Ainsi, x est en première position
dans la séquence à parcourir en entrée, et en sortie, il est enlevé de la séquence.

Cette postcondition ne suffit pas à prouver la correction de l’algorithme, ni même sa
sûreté mémoire. En effet, il n’y a pour le moment ni garantie que le pointeur t.curr_ptr
soit valide, ni qu’il pointe vers une structure bien formée. Pour s’en assurer, nous devons
ajouter des champs fantômes à TreeIter et un invariant de type.

Gestion des pointeurs. Contrairement au Rust classique, Creusot n’autorise pas direc-
tement le déréférencement de pointeurs bruts, et ce, même dans un bloc annoté unsafe.
En effet, leur caractère librement duplicable casse la propriété « partage XOR mutation »
supposée par Creusot. Pour combler ce manque, Creusot adopte un mécanisme similaire à
Verus [LHC+23] : les pointeurs bruts sont gérés avec du code fantôme.

La création d’une valeur de type *const T se fait à travers la fonction

fn PtrOwn::new(x: T) -> (*const T, Ghost<PtrOwn<T>>)

JFLA 2026 – 37es Journées Francophones des Langages Applicatifs

Boucler la boucle du parcours de Morris Golfouse et Patault

en stockant la donnée x sur le tas. La première composante de la paire correspond au pointeur
(de programme) vers la donnée. La seconde composante contient, pour Creusot, l’équivalent
d’un points-to de logique de séparation. Le type PtrOwn représente une permission p, qui
combine le pointeur renvoyé p.ptr() et la valeur pointée p.val(). De plus, une permission
n’étant pas duplicable, la propriété « partage XOR mutation » est de nouveau satisfaite ; ce
qui permet à Creusot de suivre l’évolution de sa valeur. Remarquons enfin que la seconde
composante est enveloppée dans le type Ghost. Ceci a pour effet de l’effacer, d’un point de
vue opérationnel, à la compilation ; tout en conservant son caractère non duplicable.

Pour déréférencer le pointeur ainsi créé, Creusot fournit les fonctions PtrOwn::as_ref et
PtrOwn::as_mut. Leurs signatures sont

fn PtrOwn::as_ref(ptr: *const T, perm: Ghost<&PtrOwn<T>>) -> &T
fn PtrOwn::as_mut(ptr: *const T, perm: Ghost<&mut PtrOwn<T>>) -> &mut T

Du point de vue opérationnel, ces fonctions rendent tel quel leur premier argument (ptr).
Tandis que, du point de vue de la vérification, la valeur renvoyée est celle provenant du second
(perm.val()) : les références étant considérées comme des valeurs par Creusot. Ajoutons à
ceci que les fonctions ont pour précondition l’égalité entre ptr et perm.ptr().

Dans notre cas, nous ajoutons une séquence fantôme permissions à TreeIter. Ce champ,
de type Ghost<Seq<PtrOwn<Node<T>>>>, stocke les permissions associées aux nœuds de
l’arbre. Cette séquence indique l’ordre d’itération des nœuds : l’ordre infixe. L’invariant de
TreeIter ci-dessous manipule des indices dans cette séquence.

Instantanés. Le mécanisme d’instantanés de Creusot permet de capturer un état du
programme à partir d’une expression logique via la macro snapshot!. La donnée renvoyée
est enveloppée dans le type Snapshot. De la même manière que les données Ghost, ces
données sont effacées du point de vue opérationnel. Cependant, contrairement au type Ghost,
le type Snapshot n’induit pas de contrainte de possession : il est librement duplicable.

Dans notre cas, les instantanés sont utilisés pour garder la trace de propriétés purement
logiques. La structure logique de l’arbre d’origine est gardée comme Snapshot dans TreeIter.

Invariant de type. Nous définissons un invariant de type sur TreeIter, qui sera au-
tomatiquement ajouté au sein des préconditions et postconditions de la fonction next.
Pour exprimer cet invariant, nous ajoutons à TreeIter des champs Snapshot décrivant la
structure de données sous-jacente :

— visited, l’indice du prochain élément à visiter dans la séquence des permissions ;
— curr, l’indice de la permission correspondant à curr_ptr ;
— left, right, rightmost et leftmost, quatre tableaux d’entiers ;
— loopbacks, un tableau de booléens représentant la présence des boucles arrière.

L’invariant de type peut se découper en quatre parties :
1. le tableau left (resp. right) contient à l’indice i l’indice du fils gauche (resp. droit)

du nœud i s’il existe, et i sinon. Le tableau leftmost (resp. rightmost) contient à
l’indice i l’indice du plus petit fils le plus à gauche (resp. à droite) du nœud i s’il
existe, et i sinon. Voici les valeurs de ces tableaux pour l’arbre représenté en figure 1 :

left : 1 1 3 2 5 5 7 4 9 10
right : 1 3 3 6 5 7 7 9 10 10
leftmost : 1 1 3 1 5 5 7 1 9 10
rightmost : 1 3 3 7 5 7 7 10 10 10

2. la mémoire doit être cohérente : si le nœud à l’indice i a un fils gauche, le champ left
de la valeur de la permission à l’indice i doit être égal au pointeur de la permission à
l’indice left[i] ; s’il n’a pas de fils gauche, ce champ doit être nul. La situation est
légèrement différente pour le fils droit, à cause des boucles arrière. Si le nœud i n’a
pas de fils droit, mais que loopbacks[i] est vrai, le champ right de la valeur de la
permission à l’indice i doit être égal au pointeur de la permission à l’indice i + 1.

JFLA 2026 – 37es Journées Francophones des Langages Applicatifs

Boucler la boucle du parcours de Morris Golfouse et Patault

3. les boucles arrière doivent être caractérisées. Un nœud ne peut avoir une boucle arrière
que s’il n’a pas de fils droit dans l’arbre. Ensuite, il y a deux types de boucles arrière :
— celles posées lors du parcours vers le nœud courant. Elles ont un indice i supérieur

ou égal à curr, et la cible de la boucle (i + 1) doit être un parent de curr. Nous
exprimons cela par leftmost[i + 1] <= curr.

— celle dans le sous-arbre gauche de curr lorsque celui-ci est complètement visité.
4. Enfin, il y a quelques conditions auxiliaires. Les indices visited et curr doivent être

dans les bornes de permissions ; visited est égal soit à curr (si l’on vient de visiter
le sous-arbre gauche), soit à leftmost[curr] (si l’on s’apprête à le visiter) ; le champ
curr_ptr doit bien être le pointeur de la permission à l’indice curr ; sauf si ce champ
est nul, auquel cas visited doit être égal à la longueur de permissions.

Initialisation des invariants de type. D’une part, l’arbre initial doit contenir les champs
root, root_idx, l, r, leftmost, rightmost et la séquence permissions. Ainsi, l’invariant
de type de l’arbre est le sous-ensemble de l’invariant de l’itérateur ne mentionnant que ces
champs.

D’autre part, le champ visited de l’itérateur est initialisé à 0, chacune des cases de
loopback à false. Enfin, l’itérateur hérite de toutes les propriétés communes avec l’arbre
bien formé sur lequel il s’appuie.

TreeIter {
curr_ptr: self.root, // provient de l'arbre
permissions: self.permissions, // idem
visited: snapshot!(0), // initialisation des nouveaux champs
loopback: snapshot!(|_| false) // idem
...

}

Remarquons qu’il est inévitable que l’itérateur consomme l’arbre initial car son utilisation
(par la fonction next) brise l’invariant de l’arbre.

Invariants de boucle et axiome fantôme. La fonction next est moralement composée
de deux boucles. La boucle extérieure est la plus simple. Il s’agit de la fonction elle-même,
lorsque le sous arbre gauche n’est pas visité et qu’il faut faire un appel récursif.

Le calcul fait par la boucle interne, en revanche, est plus complexe. Celle-ci permet de
trouver le pointeur sur lequel il faut installer (ou retirer) la boucle arrière. Nous décrivons
dans ce paragraphe les invariants de boucle nécessaires à cette tâche.

Initialement, le pointeur pred_ptr est le fils gauche du nœud courant curr_ptr. Pour
accéder à sa valeur — requise pour être comparée dans la condition de boucle — nous devons
en avoir la permission. Cette dernière peut être récupérée grâce au tableau fantôme que
nous avons ajouté (t.permissions[t.left[t.curr]]). Ensuite, au cours de l’itération, le
pointeur pred_ptr suit son fils droit tant que possible et la variable pred contient l’indice
fantôme de la permission correspondante (initialement t.left[t.curr]).

Les deux premiers invariants de la boucle assurent que l’indice pred corresponde à l’indice
de la permission de pred_ptr :

#[invariant(0 <= pred && pred < t.permissions.len())]
#[invariant(t.permissions[pred].ptr() == pred_ptr)]

Nous pouvons donc accéder cette permission, de manière à pouvoir suivre le fils droit de
pred_ptr :

let right = PtrOwn::as_ref(pred_ptr, t.permissions[pred].borrow()).right;

Le troisième invariant est le plus important. Il indique la cible de la boucle, le nœud ayant
l’indice t.curr - 1 :

#[invariant(t.rightmost[pred] == t.curr - 1)]

JFLA 2026 – 37es Journées Francophones des Langages Applicatifs

Boucler la boucle du parcours de Morris Golfouse et Patault

Il y a deux façon de sortir de la boucle. Dans les deux cas, il est demandé de prouver
l’égalité pred == t.curr - 1. Nous procédons par analyse de cas, selon la façon dont nous
sortons de la boucle. La première, lorsque l’on arrive en bas du sous arbre : right.is_null().
La seconde, lorsque l’on revient par la boucle arrière : right == t.curr_ptr.

Dans le premier cas, l’invariant de type nous garantit que t.right[pred] == pred, et
l’égalité pred == t.curr - 1 en est une conséquence simple. En revanche, le second cas
est moins évident. Lorsque right est égal à t.curr_ptr, il y a une boucle arrière. Mais
pour en être certain, il y a un cas que nous devons exclure en vérifiant que pred_ptr n’a
pas de fils droit égal à t.curr_ptr dans l’arbre d’origine. C’est-à-dire, que la permission
située à l’indice t.right[pred] n’est pas associée au pointeur t.curr_ptr.

Cette déduction requiert l’utilisation d’un axiome fantôme de la bibliothèque standard de
Creusot :

#[ensures(own1.ptr().addr_logic() != own2.ptr().addr_logic())]
#[ensures(*own1 == ^own1)]
pub fn disjoint_lemma<T>(own1: &mut PtrOwn<T>, own2: &PtrOwn<T>) {}

où addr_logic() convertit un pointeur en un entier. Cet axiome est admis dans Creusot
car chaque pointeur renvoyé par PtrOwn::new est unique. Remarquons aussi que le typage
de Rust garantit que own1 et own2 pointent vers des objets disjoints.

Dans notre cas, l’utilisation de cet axiome nous permet de savoir que toutes les permissions
contenues dans la séquence t.permissions sont, nécessairement, associées à des pointeurs
différents. L’inégalité t.right[pred] ⩽ t.curr - 1 étant vraie, les permissions associées
au fils droit de pred_ptr et à t.curr_ptr sont disjointes. Ainsi, nous pouvons déduire que
pred == t.curr - 1.

Ceci conclut la preuve des invariants de la boucle interne. Celle-ci est le point critique
de la preuve du parcours de Morris. La spécification principale (postcondition de next) est
relativement simple à établir, en aidant les prouveurs SMT avec des assertions fantômes
bien choisies.

4 Discussion
Limitations. Dans ce paragraphe, nous détaillons des améliorations possibles de notre
implémentation de l’algorithme de Morris. Nous n’anticipons pas de difficultés fondamentales
à la réalisation de ces idées. D’abord, il est possible de faire renvoyer par next la possession
complète de la donnée (T) plutôt qu’un emprunt mutable (&mut T). Cela nécessite de
modifier la séquence des permissions au fil de l’itération en retirant un élément à chaque
étape. Ce changement complexifie la gestion des indices dans l’invariant mais semble faisable.
Autrement, nous pouvons reconstruire l’arbre dans son état initial, à condition de ne pas faire
renvoyer par next la possession des données. Cette reconstruction n’est possible qu’après
avoir exécuté entièrement l’itération (t.completed()), une fois que toutes les boucles arrières
sont enlevées :

#[requires(t.completed())]
fn reconstruct<T>(t: TreeIter<T>) -> Tree<T>

Travaux connexes. Filliâtre et Paskevich [FPD25] ont vérifié l’algorithme de Morris avec
Why3. Cependant, cet outil ne permet pas de définir le type des arbres récursifs et mutables
ce qui les contraints à utiliser un modèle mémoire explicite pour programmer l’algorithme.
Par opposition, le code fantôme de Creusot nous permet d’utiliser naturellement le type
Node des nœuds. Ainsi, le programme vérifié est directement exécutable.

La méthode appliquée ici est adaptée du celle développée autour de l’outil Verus [LHC+23].
La vérification de l’algorithme de Morris semble réalisable d’une manière proche de la notre.
Cependant, le support des emprunts mutables dans Verus est plus restrictif que celui de

JFLA 2026 – 37es Journées Francophones des Langages Applicatifs

Boucler la boucle du parcours de Morris Golfouse et Patault

Creusot. Cela rend impossible l’utilisation de Option<&mut T> comme la même type de
retour pour la fonction next en les restreignant à un simple emprunt partagé.

Enfin, l’utilisation du code fantôme a permis de vérifier d’autres algorithmes de graphe,
tels qu’une bibliothèque de tableaux persistants et la structure union-find. Ces exemples
sont décrits par Golfouse, Guéneau et Jourdan [GGJ26] dans le travail introduisant le code
fantôme avec possession dans Creusot.

5 Conclusion
Nous avons présenté une implémentation Rust de l’algorithme de Morris. Nous prouvons

avec l’outil Creusot que la séquence générée est bien un parcours infixe des éléments de
l’arbre initial et la sûreté de l’exécution.

Remerciements. Cette recherche a été [partiellement] soutenue par les projets Gospel
et Décysif, financés par la région Île-de-France et par le gouvernement français dans le
cadre du programme « Plan France 2030 ».

Références
[BFM+11] François Bobot, Jean-Christophe Filliâtre, Claude Marché, Guillaume

Melquiond et Andrei Paskevich : The Why3 platform, février 2011. https:
//www.why3.org/.

[DJM22] Xavier Denis, Jacques-Henri Jourdan et Claude Marché : Creusot : a foundry
for the deductive verification of Rust programs. In International Conference
on Formal Engineering Methods, pages 90–105. Springer, 2022. https://hal.
science/hal-03737878.

[FPD25] Jean-Christophe Filliâtre, Andrei Paskevich et Olivier Danvy : When
Separation Arithmetic is Enough. In iFM 2025 - 20th International Conference
on Integrated Formal Methods, Paris, France, novembre 2025. Caterina Urban,
Inria & ENS | PSL, France.

[GGJ26] Arnaud Golfouse, Armaël Guéneau et Jacques-Henri Jourdan : Using Ghost
Ownership to Verify Union-Find and Persistent Arrays in Rust. In Proceedings
of the 15th ACM SIGPLAN International Conference on Certified Programs
and Proofs (CPP ’26), January 12–13, 2026, Rennes, France, Rennes, France,
janvier 2026. SIGPLAN.

[LHC+23] Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha Sub-
asinghe, Yi Zhou, Jon Howell, Bryan Parno et Chris Hawblitzel : Verus :
Verifying rust programs using linear ghost types. Software Artifact (virtual
machine, pre-built distributions) for “Verus : Verifying Rust Programs using
Linear Ghost Types”, 7(OOPSLA1):85 :286–85 :315, avril 2023.

[Mor79] Joseph M Morris : Traversing binary trees simply and cheaply. Information
Processing Letters, 9(5):197–200, 1979.

[PGD25] Paul Patault, Arnaud Golfouse et Xavier Denis : Remonter les barrières pour
ouvrir une clôture. In JFLA 2025 - 36es Journées Francophones des Langages
Applicatifs, Roiffé, France, janvier 2025. https://hal.science/hal-04859517.

[PPF25] Andrei Paskevich, Paul Patault et Jean-Christophe Filliâtre : Coma, an
intermediate verification language with explicit abstraction barriers. https:
//hal.science/hal-04839768, 2025.

JFLA 2026 – 37es Journées Francophones des Langages Applicatifs

https://www.why3.org/
https://www.why3.org/
https://hal.science/hal-03737878
https://hal.science/hal-03737878
https://hal.science/hal-04859517
https://hal.science/hal-04839768
https://hal.science/hal-04839768

	Introduction
	Algorithme de Morris
	Preuve
	Discussion
	Conclusion

