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Dans de nombreux programmes, les clôtures permettent d’exprimer de manière
concise des transformations de données. Mais lorsqu’un outil de vérification est
utilisé, elles doivent être accompagnées de spécifications souvent plus longues
que leur corps. C’est un problème particulièrement désagréable, car ces clôtures
sont fréquemment simples et leur spécification est redondante.

Dans ce travail, nous présentons un mécanisme d’inférence de spécification
des clôtures pour la vérification formelle de programmes Rust. Nous proposons
l’utilisation du langage intermédiaire de vérification Coma comme backend par
l’outil de vérification déductive Creusot. Notre conception est capable de gérer
l’état mutable interne d’une clôture et d’inférer sa spécification. Nous utilisons
ce mécanisme pour vérifier de manière ergonomique et modulaire une série de
programmes Rust utilisant des fonctions d’ordre supérieur.

1 Introduction
Le langage de programmation Rust a révolutionné le domaine de la programmation

système au cours de la dernière décennie grâce à son adoption de notions issue de la
théorie des langages de programmation. Connu pour son système de types basé sur la
notion de possession, Rust est capable d’assurer l’utilisation sûre des pointeurs mutables (et
immuables) dans un langage sans ramasse-miettes. De plus, Rust intègre des constructions
habituellement associées à des langages fonctionnels telles que les types algébriques ou les
clôtures. Bien qu’atypiques dans un langage de programmation système, les clôtures de Rust
sont fréquemment utilisées. En particulier, elles se combinent naturellement à des itérateurs.

Denis et al. [DJ23] ont montré comment vérifier la correction de l’itérateur map avec l’outil
Creusot. La technique proposée fonctionne lorsque cet itérateur est appliqué à des fonctions
partielles avec effets de bord. Cependant, Creusot est un vérificateur modulaire au sens
classique, traitant comme opaque toute clôture passée en argument. La seule information
connue sur celle-ci provient donc du contrat fourni par l’utilisateur :

map(i, #[requires(x < u32::MAX)] #[ensures(result == x + 1u32)] |x| x + 1)

Nous perdons ici les intérêts principaux de l’utilisation d’itérateurs : la clarté et la concision.
Même dans un exemple aussi simple que l’incrément, le contrat est bien plus long que la
clôture elle-même. L’attrait des itérateurs est donc perdu par rapport aux boucles ordinaires.

L’expansion des clôtures à leur point d’appel n’est pas une solution à ce problème. En
effet, l’itérateur map (voir figure 1) est spécifié par rapport au contrat de la clôture attendue.
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Il nécessite donc des symboles lui permettant de nommer les pré- et postconditions de cette
clôture.

L’existence de ces symboles nous permet de raisonner abstraitement sur les propriétés que
les instanciations individuelles de map doivent satisfaire. Lorsqu’une clôture reçoit un contrat
explicite, ces symboles sont facilement générés par Creusot. En revanche, l’expansion de la
clôture au point d’appel nous fait perdre la définition de ces symboles.

Le défi central de notre travail est donc : comment pouvons-nous préserver l’ergonomie
des clôtures pendant la vérification de programmes Rust ?

Pour résoudre ce problème, nous utilisons Coma [PPF25], un nouveau générateur de
conditions de vérification, en l’étendant avec la capacité de réifier les préconditions et
postconditions des définitions comme symboles indépendants. Nous utilisons ce nouveau
mécanisme pour étendre la traduction de Creusot en éliminant les spécifications utilisateur
des clôtures et démontrons son fonctionnement sur des exemples techniques (incluant des
clôtures avec état mutable, effets de bord et fonctions partielles).

Le reste de l’article est structuré comme suit. Dans la section 2, nous donnons un aperçu
rapide de la traduction de Rust par Creusot, en particulier sa gestion des programmes
d’ordre supérieur. Dans la section 3, nous présentons rapidement le langage Coma et
son générateur de conditions de vérification. Nous définissons le nouveau mécanisme de
« d’extraction de spécification » qui produit les pré- et postconditions d’une définition. Nous
montrons ensuite en section 4 comment utiliser ce mécanisme pour inférer les spécifications
manquantes dans les clôtures, permettant une vérification sans intervention de l’utilisateur.
Dans la section 5, nous évaluons notre approche sur une série de benchmarks en montrant
que celle-ci supprime la surcharge utilisateur introduite par l’usage traditionnel des clôtures.
Enfin, nous laissons nos remarques finales dans la section 6.

2 Creusot

Creusot [DJM22, DJ23] est un outil de spécification et vérification déductive pour
Rust. Il s’appuie sur Coma, un nouveau langage d’entrée pour la plateforme de preuve
de programmes Why3 [FP13]. Le travail de Creusot est de traduire un programme
impératif écrit et annoté en Rust, vers le langage fonctionnel Coma. Chaque fonction Rust
du fichier source est traduite vers un module de Coma indépendant. Ensuite, les conditions
de vérification (VC) du programme Coma sont calculées et envoyées à des prouveurs
automatiques tels que Z3 [DMB08] et Alt-Ergo [CCIM18].

En Rust, les clôtures sont des fonctions anonymes qui peuvent capturer leur environnement.
Elles utilisent la syntaxe |x: i32, y: i32| x + y, les paramètres sont définis entre les
barres verticales (ici x: i32 et y: i32) et sont suivis du corps de la clôture (ici x + y). De
manière systématique et pour des raisons d’efficacité, les clôtures de Rust sont monomorphi-
sées : si une fonction attend une clôture en argument, chaque appel de cette fonction génère
un objet différent pour lequel la clôture appelée est connue.

Le programme Rust en figure 1 nous permet d’illustrer le traitement des clôtures par
Creusot. Ce fragment de programme contient trois fonctions à vérifier, de manière indépen-
dante. La première, map, transforme le contenu de l’itérateur i en le passant à la clôture f.
La deuxième, iter_add, est le code client qui appelle map. Enfin, la troisième fonction
est associée à la clôture |x: i32| x + y. Elle est générée par le compilateur qui s’occupe
aussi de capturer et de lui passer l’environnement (ici seulement la variable y) comme un
argument supplémentaire. Les spécifications sont écrites dans des attributs #[...] ignorés
par le compilateur, mais utilisés par Creusot pour générer le code Coma.

D’une part, la vérification de la définition de map est basée sur deux prédicats abstraits
f.precondition et f.postcondition qui axiomatisent le comportement de la clôture. La
spécification de la fonction map est simplifiée pour faciliter la compréhension. En particulier,
elle utilise le prédicat i.emits(x), qui affirme que l’itérateur i peut produire l’élément x.
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1 #[requires(forall<x> i.emits(x) ==> f.precondition(x))]
2 #[ensures(forall<x, r> i.emits(x) ==> result.emits(r) ==> f.postcondition(x, r))]
3 fn map<I: Iterator, F: Fn(i32) -> i32>(i: I, f: F) -> Map<I, F> { ... }
4
5 fn iter_add(i: I, y: i32) -> i32 {
6 map(i,
7 #[requires(i32::MIN <= x + y && x + y <= i32::MAX)]
8 #[ensures(result == x + y)]
9 |x: i32| x + y

10 ).sum()
11 }

Figure 1. Utilisation des clôtures avec Creusot

D’autre part, la vérification de iter_add (dont la spécification est omise) demande de
vérifier un appel à map. Cette vérification repose sur la monomorphisation de la clôture :
Creusot sait précisément sur quel f la fonction map est appelée et peut donc instancier
les prédicats de pré- et postcondition. Ainsi, au moment de prouver iter_add, le code
Coma utilise une version spécialisée de map dans laquelle les prédicats f.precondition
et f.postcondition sont remplacés par i32::MIN <= x + y && x + y <= i32::MAX et
result == x + y.

Cependant, nous pouvons remarquer que la précondition (resp. postcondition) de la clôture
est redondante avec la précondition (resp. postcondition) implicite de l’addition x + y. Ainsi,
la spécification que l’on donne à la clôture n’a pas vraiment lieu d’être. De plus, cette fonction
n’étant utilisée qu’une seule fois (lors de l’appel à map), la vérifier de manière indépendante
perd de son intérêt.

Dans un monde idéal (cf. section 4), nous ne voulons pas écrire la spécification de cette
clôture. En revanche, nous voulons garder la vérification modulaire des fonctions map et
iter_add avec les prédicats f.precondition et f.postcondition.

3 Coma

Le langage Coma [PPF25] (abréviation pour Continuation Machine) est un langage
intermédiaire pour la vérification de programmes. De la même manière que Boogie [BCD+06]
ou Viper [MSS16], il peut servir de représentation intermédiaire pour des outils de preuves
de programmes de multiples langages. Il est implémenté comme un nouveau langage d’entrée
du système Why3. Cela permet de profiter pleinement de son backend et en particulier de
l’interface avec divers prouveurs automatiques.

Paskevich et al. définissent formellement le système de types, la sémantique opérationnelle
et le calcul de conditions de vérification de Coma. Plus de détails sur l’implémentation se
trouvent dans la documentation [PP24] du langage. Cependant, pour aider à la compréhension
du lecteur, nous détaillons dans la partie suivante la syntaxe utilisée.

Syntaxe. Les constructions de base sont les expressions qui représentent les calculs.
Elles peuvent être encapsulées dans des handlers 1 nommés ou anonymes, qui peuvent être
appelés ou passés en paramètre de continuation. À l’inverse, les termes correspondent aux
données pures qui peuvent être stockés dans des variables (notées x et y) et utilisés dans les
assertions. Ils comprennent des constantes, des variables et des opérations pures et totales.
Nous omettons leurs définitions et celles de leurs types et prenons celles usuelles à la ML.

La spécification est basée sur la logique du premier ordre. Les formules notées φ peuvent
contenir des termes et des variables, mais pas des expressions.

1. Nom donné aux « fonctions » de Coma.
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signature de type : π ::= (α)⋆ (x : τ)⋆ (h :π)⋆ liste de paramètres

expression : e ::= h handler
| π → e handler anonyme
| e τ⋆ s⋆ e⋆ application
| e / h π = e définition locale
| {φ } e assertion
| ↑ e barrière opaque

Figure 2. Syntaxe de Coma.

La syntaxe des expressions et de leurs types est détaillée en figure 2. La signature de
type d’une expression (notée π) est la liste des paramètres attendus par celle-ci. Un handler
peut prendre en argument des variables de types, des termes et des handlers (qui sont
les continuations). Comme le langage Coma est en style par passage de continuation, les
handlers n’ont pas de valeur de retour. Notons enfin qu’une définition de handler à haut
niveau est introduite avec le mot clé let.

À des fins de simplicité, nous supposons avoir une bibliothèque standard minimale
comprenant le handler fail, qui arrête le programme avec la précondition ⊥ (équivalent de
assert false) et le handler unList, qui correspond à match-with sur une liste. Ce dernier
prend en paramètre une liste l et deux continuations : si l = Cons h t, le contrôle est
passé à la première continuation qui reçoit h et t en argument ; sinon l est vide, le contrôle
est passé à la seconde continuation.

Prenons comme exemple le handler tail défini ci-dessous. Il attend une liste d’entiers l
et appelle sa continuation return avec la suite de cette liste, ou échoue si elle est vide.

1 let tail (l: list int) (return (r: list int))
2 = { l ̸= Nil }
3 ↑ unList l ((h: int) (t: list int) → break t) fail
4 / break (tl: list int) = { exists h. l = Cons h tl } ↑ return tl

L’implémentation de ce handler commence avec l’assertion { l ̸= Nil } qui garde l’ex-
pression de la ligne 3. Cette expression est également placée sous une barrière opaque
(opérateur ↑) qui n’affecte pas l’exécution, mais uniquement le calcul des conditions de
vérification. La barrière cache l’expression qui n’est vérifiée qu’une seule fois, pour toutes
valeurs de paramètres. Le symbole slash en ligne 4 sépare l’expression principale de la
définition locale de break et peut être interprété comme le mot « où ».

Remarquons que le handler break enveloppe l’appel à la continuation return en insérant
l’assertion { exists h. l = Cons h tl } et une barrière opaque. Cette définition n’est
pas cachée sous la barrière de la ligne 3. Nous avons ajouté une précondition à la continuation,
ou autrement dit, une postcondition au handler tail.

Calcul des conditions de vérification. Les conditions de vérification (VC) sont les
propriétés qu’une expression doit satisfaire pour assurer sa correction fonctionnelle. Elles
sont calculées différemment selon le mode courant. Nous distinguons deux modes :

D : mode appelé détermine la correction d’une définition de handler ;
A : mode appelant détermine la correction d’un appel à un handler.

Par opposition aux méthodes traditionnelles, le changement de mode n’est pas automatique-
ment fait au niveau des fonctions. Coma propose un mécanisme de barrière d’abstraction
flexible qui permet de passer intentionnellement d’un mode à un autre. En particulier,

D(↑ e) ≜ D(e) ∧ A(e) A(↑ e) ≜ ⊤
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L’opérateur de barrière opaque, noté ↑, sépare explicitement le code faisant partie de
l’interface et le code tenant purement de l’implémentation. Le mode appelé suppose les
préconditions et vérifie la correction de la partie implémentation sous la barrière opaque. À
l’inverse, le mode appelant extrait la spécification d’un handler en traitant toute assertion
comme une précondition à vérifier au point d’appel mais s’arrête au niveau de la barrière 2.

D({φ} e) ≜ φ → D(e) A({φ} e) ≜ φ ∧ A(e)

La correction totale d’une expression est assurée par la preuve de la formule obtenue par le
mode total qui vérifie les assertions avant et après la barrière opaque, c’est la conjonction
de A et D.

Nous définissons deux fonctions Â et D̂, générant chacune un prédicat à partir d’un hand-
ler h monomorphe et d’ordre un (ses paramètres de continuations n’ont pas de paramètres
de continuations) 3. Ces fonctions préfixent le calcul de VC appliqué au code du handler
(noté hbody) en introduisant ses paramètres, avec des lambdas pour le premier cas et des
quantificateurs universels pour le second. Les paramètres de termes sont inchangés et les
paramètres de continuations sont transformés en prédicats (qui représentent leur VC) avec
l’opérateur ⌈·⌉ défini ci-dessous.

Â(h) = λ(x : τ)⋆. λ(g :⌈π⌉)⋆.A(hbody)

D̂(h) = ∀(x : τ)⋆.∀(g :⌈π⌉)⋆.D(hbody)

⌈(y1 : τ1) · · · (yt : τt)⌉ = (y1 : τ1) → · · · → (yt : τt) → Prop

Nous pouvons appliquer ces fonctions à notre exemple tail. Les deux auront deux
arguments : la liste d’entrée ℓ et la VC de la continuation ret . Mais dans le premier cas
il faut prouver la précondition sur des arguments concrets (qui doivent être fournis). En
retour, nous gagnons la postcondition comme hypothèse pour la preuve de la VC de la suite
du programme.

Â(tail) = λℓ : list int. λret : list int → Prop.

ℓ ̸= Nil ∧ (∀tℓ. (∃h. ℓ = Cons h tℓ) → ret tℓ)

À l’inverse, le mode appelé suppose la précondition et demande la preuve du corps du
handler tail pour toutes valeurs de paramètres.

D̂(tail) = ∀ℓ : list int.∀ret : list int → Prop.

ℓ ̸= Nil →
(∀h.∀tℓ. ℓ = Cons h tℓ → (∃h ′. ℓ = Cons h ′ tℓ)) ∧
(ℓ = Nil → ⊥)

Ainsi, il faut montrer la précondition de break (c’est-à-dire la postcondition de tail) si la
première continuation de unList est appelée, et la précondition de fail (c’est-à-dire ⊥)
sinon. Remarquons que le prédicat ret n’apparait pas dans cette formule : cela vient du fait
que l’appel à cette continuation est caché sous la barrière opaque.

Il est important de constater que la formule D̂(tail) est une trivialité. Cela vient du
fait que la spécification répète précisément ce que calcule le programme : la spécification
est redondante. Ce problème apparait souvent sur des fonctions courtes, en particulier
lorsque l’on doit donner une spécification à une clôture. Or Coma nous permet d’omettre
complètement l’ajout d’une barrière dans un handler non récursif. Nous pouvons donc définir
le handler tail sans barrière de la manière suivante

2. Le reste des règles est omis, voir [PPF25] pour le détail.
3. Ces deux contraintes sont nécessaires pour que la transformation du type des continuations en prédicats

WhyML soit possible.
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let tail (l: list int) (return (r: list int))
= unList l ((h: int) (tl: list int) → return tl) fail

Ce qui est équivalent d’un point de vue opérationnel, mais a pour effet d’expanser systéma-
tiquement la VC de tail dans le contrat de l’appelant. Dans ce cas, la formule Â(tail)
ne change pas, en revanche D̂(tail) devient ⊤. C’est équivalent au cas précédent, sauf que
nous n’avons pas spécifié tail inutilement.

Inférence de spécification. Le langage Coma nous permet de générer automatiquement
des prédicats de spécification d’un handler h. C’est un mécanisme qui se révèle particuliè-
rement utile pour des fonctions auxquelles nous ne voulons pas donner explicitement de
spécification, mais avec lesquelles nous voulons raisonner 4. À partir de la formule Â(h),
des prédicats correspondants aux pré- et postconditions peuvent être calculés par une
simple transformation syntaxique. L’ajout de l’annotation [@coma:extspec] à la définition
d’un handler permet l’activation de cette génération, sur tail (sans barrières) nous obtenons

predicate tail'pre (l: list int) = l ̸= Nil
predicate tail'post (l: list int) (r: list int) = exists h:int. l = Cons h r

La précondition d’un handler h correspond moralement à ce que nous obtiendrions avec
un calcul de plus faibles préconditions traditionnel (WP) appliquée au corps de h et la
postcondition triviale « WP(hbody ,⊤) ». Nous pouvons donc la récupérer à partir de la
formule en mode appelant par η-expansion des paramètres et en donnant ⊤ comme VC de
continuation :

tail'pre ≡ λℓ : list int. Â(tail) ℓ (fun _ 7→ ⊤)

≡ λℓ : list int. ℓ ̸= Nil ∧ (∀tℓ. (∃h. ℓ = Cons h tℓ) → (fun _ 7→ ⊤) tℓ)

≡ λℓ : list int. ℓ ̸= Nil

La postcondition d’un handler h correspond en revanche à une formule obtenue avec une
transformation plus complexe. Cette dernière est assimilable à ce que nous pouvons obtenir
en appliquant un calcul de plus forte postcondition (SP) au corps de h et à sa WP appliqué
à une postcondition triviale « SP(hbody ,WP(hbody ,⊤)) ». Pour ce faire, nous utilisons une
opération de neutralisation notée ♮. Cette opération a pour effet de retirer les obligations de
preuves propres à la formule à laquelle elle est appliquée. Sur Â(tail), nous obtenons

Â♮(tail) = λℓ : list int. λret : list int → Prop.

∀tℓ. (∃h. ℓ = Cons h tℓ) → ret tℓ

La postcondition de tail correspond à la partie gauche de la flèche dans la formule ci-
dessus ; avec la différence que la variable quantifiée tℓ doit être instanciée avec la valeur de
retour du handler. Pour la récupérer nous appliquons d’abord une négation transformant
l’implication en conjonction. Pour instancier correctement le quantificateur, nous ajoutons
l’égalité souhaitée comme VC de continuation (que nous devons passer également sous
une négation pour annuler la précédente). Ainsi, nous obtenons une conjonction entre la
postcondition attendue et l’égalité qui force l’instanciation du quantificateur existentiel.

tail'post ≡ λℓ, r : list int. ¬(Â♮(tail) ℓ (fun tl 7→ tl ̸= r))

≡ λℓ, r : list int. ¬(∀tℓ. (∃h. ℓ = Cons h tℓ) → (fun tl 7→ tl ̸= tℓ) r)

≡ λℓ, r : list int. ∃tℓ.∃h. ℓ = Cons h tℓ ∧ r = tℓ

≈ λℓ, r : list int. ∃h. ℓ = Cons h r

Ce mécanisme d’extraction se généralise naturellement aux handlers ayant plusieurs
continuations. En revanche cela ne s’applique pas aux handlers ayant des continuations

4. Un cas d’usage typique est le passage de fonction en paramètre. Par exemple pour List.map f l, nous
voulons demander dans la précondition de List.map que la précondition de f soit vraie sur les éléments de l.

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs



Remonter les barrières pour ouvrir une clôture Patault, Golfouse et Denis

d’ordre supérieur. Enfin, remarquons que ce mécanisme d’extraction de spécification ne peut
pas introduire d’incohérence logique, mais seulement mener à un but non prouvable. En
effet, seuls des prédicats sont générés et non des lemmes ou des axiomes qui introduiraient
des informations en contexte.

4 Application dans Creusot

Reprenons l’exemple de la figure 1, en gardant la spécification explicite de la clôture. Voici
un fragment du code Coma produit par Creusot sur cet exemple :

1 module Map (* traduction de `map` *)
2 type i type f
3 predicate f'pre (f: f) (x: i32)
4 predicate f'post (f: f) (x: i32) (result: i32)
5 let map (i: i) (f: f) (return (r: iter_map_t i f))
6 = { forall x. emit i x → f'pre f x } ↑ ...
7 / break (result: iter_map_t i f)
8 = { forall x r. emit i x → emit result r → f'post f x r } ↑ return r
9 end

10
11 module Iter_Add_Closure (* traduction de la clôture *)
12 type clos_env = i32
13 let closure_call (f: clos_env) (x: i32) (return (r: i32))
14 = { i32_min ≤ x + f ∧ x + f ≤ i32_max } ↑ break (x + f)
15 / break (result: i32) = { result = x + f } ↑ return result
16 end
17
18 module Iter_Add (* traduction de `iter_add` *)
19 use Iter_Add_Closure as Clos
20 type i
21 predicate precondition (f: Clos.clos_env) (x: i32)
22 = i32_min ≤ x + f ∧ x + f ≤ i32_max
23 predicate postcondition (f: Clos.clos_env) (x: i32) (result: i32)
24 = result = x + f
25
26 clone Map with type i, type f = Clos.clos_env,
27 predicate f'pre = precondition, predicate f'post = postcondition
28
29 (* `iter_add` utilise la fonction `map` chargée par le `clone` *)
30 let iter_add (i: i) (y: i32) (return (r: unit)) = ↑ ...
31 end

Chaque fonction Rust du programme initial est vérifiée dans un module différent. Les
définitions Coma map (ligne 5), closure_call (ligne 13) et iter_add (ligne 30) doivent
être vérifiées. Notons que le handler map est cloné par Creusot dans le module Iter_Add
(lignes 26-27) en instanciant les prédicats abstraits f'pre et f'post avec precondition et
postcondition. Ceci correspond à la monomorphisation de la fonction en Rust, et permet
comme promis une vérification modulaire.

Cependant, nous savons que la spécification et la vérification de la clôture de notre
exemple n’a pas vraiment lieu d’être : « la précondition (resp. postcondition) de la clôture
est redondante avec la précondition (resp. postcondition) implicite de l’addition x + y »
(page 2). Pour éviter d’écrire la spécification de cette clôture nous utilisons la méthode vu
en section 3. Ainsi, nous enlevons la barrière opaque et les assertions de sa traduction Coma
(lignes 13 à 15).

De plus, nous avons besoin de nous référer aux prédicats precondition et postcondition
pour pouvoir écrire la version monomorphisée de map. C’est ici que le mécanisme d’extraction
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Nom du programme LoC LoS # Fonctions Temps Écart type

bool_then.rs 24 10 1 0,835 0,022
bool_then.rs+extspec 18 8 1 0,837 0,016

option.rs 52 31 11 0,975 0,032
option.rs+extspec 24 12 1 0,892 0,020

iterator.rs 42 15 9 2,794 0,043
iterator.rs+extspec 24 9 4 2,508 0,025

avl.rs 105 155 6 1,345 0,030
avl.rs+extspec 101 99 4 1,504 0,071

Table 1. Résultats de notre évaluation. La colonne « LoC » indique les lignes de code du programme que
nous vérifions. La colonne « LoS » mesure les lignes de spécifications et d’assertions utilisées. La
colonne « # Fonctions » mesure le nombre de fonctions devant être vérifiées dans le programme. La
colonne « Temps » indique le temps moyen de vérification pour le programme entier en secondes
(moyenne réalisée avec 10 exécutions). La colonne « Écart type » indique l’écart type du temps de
vérification pour le programme entier en secondes.

de spécification de Coma intervient. Il offre la génération des prédicats closure'pre et
closure'post, même pour un handler sans barrière.

Ainsi, le code Rust de la fonction iter_add (figure 1) tenant initialement sur 5 lignes peut
se réduire à la simple ligne map(i, |x: i32| x + y).sum() et reste autant vérifié. Celui-ci
est bien plus clair et concis que la version initiale.

Finalement, avec cette nouvelle version, le traitement de la fonction iter_add produit un
seul module au lieu de deux.

1 module Iter_Add
2 use Iter_Add_Closure as Clos
3 let closure [@coma:extspec] (f: Clos.clos_env) (x: i32) (return (r: i32))
4 = return (x + f) (* pas de barrière *)
5 predicate precondition (f: Clos.clos_env) (x: i32)
6 = closure'pre f x
7 predicate postcondition (f: Clos.clos_env) (x: i32) (result: i32)
8 = closure'post f x result
9

10 (* ajouter les lignes 26-30 du programme précédent *)
11 end

Les conditions de vérification générées pour precondition et postcondition sont alors
équivalentes à la version explicite.

5 Expérimentation et évaluation
Pour évaluer notre approche, nous mesurons la capacité de extspec à éliminer les spécifi-

cations utilisateur des programmes Rust. En utilisant des programmes extraits de la suite
de tests de Creusot et de la bibliothèque standard de Rust, nous comparons le nombre
de lignes de spécification avec et sans extspec, ainsi que le temps nécessaire pour vérifier
ces programmes. L’évaluation est réalisée avec une machine ayant un processeur Intel Core
i7-13800H, jusqu’à 5,2GHz, 14 cœurs et 32 Go de RAM.

Les résultats sont présentés dans le tableau 1. Nous vérifions quatre suites de tests :
un petit programme utilisant la fonction bool::then, une collection de tests de l’API de
Option dans la bibliothèque standard, une utilisation de map, et enfin une implémentation
d’arbres binaires de recherche équilibrés [BFS16]. Les décomptes de lignes ont été obtenus
après avoir exécuté le formateur rustfmt pour normaliser les fichiers. Pour obtenir les temps
de calcul, nous utilisons le logiciel hyperfine [Pet23] et la commande replay de Why3.
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L’exemple des arbres de recherche est particulièrement illustratif du gain obtenu par le mé-
canisme d’inférence de spécification. Autrement, les fonctions rotate_left et rotate_right
auraient une spécification très longue, répétant en grande partie leur définition.

Il est également intéressant de noter que iterator.rs+extspec contient encore deux
assertions, en raison de deux fonctions distinctes. Dans le premier cas, la spécification
manuelle est nécessaire pour guider les prouveurs afin qu’ils puissent déduire l’égalité entre
deux séquences. (La même spécification est présente sans inférence.)

Dans le second cas, l’assertion restante provient de la fonction counter, reproduite ci-
dessous. Remarquons que nous utilisons la fonction map_inv plutôt que map. En effet, nous
souhaitons spécifier l’itérateur map avec un paramètre supplémentaire prod qui correspond
à la séquence des éléments déjà parcourus [FP16].

#[ensures(result@ == v@.len())]
pub fn counter<T>(v: Vec<T>) -> usize {

let mut cnt: usize = 0;
let _: Vec<_> = v.into_iter().map_inv(|x, prod| {

proof_assert!(cnt@ == prod.len());
cnt += 1; x }).collect();

cnt
}

L’unique assertion présente dans la clôture lie les valeurs de cnt et la longueur de la séquence
prod, ce qui est nécessaire pour prouver la postcondition de la fonction. Sans cette assertion,
l’inférence extspec produirait une précondition trop faible.

6 Conclusion
Nous avons présenté l’utilisation du langage intermédiaire de vérification Coma comme

backend de Creusot, un outil de vérification de programmes Rust. Nous avons mis au
point une méthode permettant de vérifier des programmes utilisant des clôtures dont nous
omettons la spécification, et nous l’avons vérifiée expérimentalement. Les travaux futurs
incluent l’ajout des clôtures dyn dans Creusot et l’inférence de spécification pour des
handlers d’ordre supérieur dans Coma.

Travaux connexes. Prusti [WBM+21] est un outil de preuves de programmes permettant
également de vérifier du code Rust avec des clôtures qui capturent leur environnement.
En revanche, il n’y a pas de mécanisme d’inférence de spécification et les clôtures doivent
nécessairement être annotées avec des pré- et postconditions. D’autre méthodes telles que
la bi-abduction [CDOY09, TLDC13] permettent d’inférer des propriétés de programmes
impératifs. Cette dernière est principalement appliquée à des problèmes dans un cadre de
logique de séparation. Coma étant basé sur une logique de premier ordre, nous pouvons
utiliser un mécanisme moins complexe.

Accessibilité des sources. Les exemples discutés en section 5 sont disponibles à l’adresse
https://doi.org/10.5281/zenodo.14507773.
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