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Abstract. We introduce Coma, a formally defined intermediate verification lan-
guage. Specification annotations in Coma take the form of assertions mixed with
the executable program code. A special programming construct representing the
abstraction barrier is used to separate, inside a subroutine, the “interface” part
of the code, which is verified at every call site, from the “implementation” part,
which is verified only once, at the definition site. In comparison with traditional
contract-based specification, this offers us an additional degree of freedom, as we
can provide separate specification (or none at all) for different execution paths.
We define a verification condition generator for Coma and prove its correctness.
For programs where specification is given in a traditional way, with abstraction
barriers at the function entries and exits, our verification conditions are similar
to the ones produced by a classical weakest-precondition calculus. For programs
where abstraction barriers are placed in the middle of a function definition, the
user-written specification is seamlessly completed with the verification conditions
generated for the exposed part of the code. In addition, our procedure can factorize
selected subgoals on the fly, which leads to more compact verification conditions.
We illustrate the use of Coma on two non-trivial examples, which have been for-
malized and verified using our implementation: a second-order regular expression
engine and a sorting algorithm written in unstructured assembly code.

1 Introduction

Consider a simple function, written in some ML dialect, which eliminates the root node
from a binary tree, using an existing library function that merges two trees in one:

type tree = Node tree elt tree | Empty

let removeRoot (t: tree) : tree
= match t with
| Node l _ r → mergeTree l r
| Empty → fail

If we want to use removeRoot in a formally verified program, we need to provide this
code with a specification. In a traditional contract-based approach, this means writing a
precondition and a postcondition, and here is how they would usually look:
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let removeRoot (t: tree) : tree
requires { t ≠ Empty }
ensures { match t with

| Node l _ r → ∀e:elt. e ∈ result ↔ e ∈ l ∨ e ∈ r
| Empty → false }

While this contract does its job, it is rather unpleasant. Not only does it take more space
than the code it describes, it also basically repeats what is already written in the code.
What is more, if we compute a verification condition (VC, for brevity) for the definition
of removeRoot, it will take the form of one match-with formula implying another—or
maybe two nested match-with formulas—and neither is easy to read and to prove.

Some programming languages, like Haskell and Agda, admit multiclause function
definitions, and it is tempting to write our specification in this way, too:

removeRoot (Node l _ r)
ensures { ∀e:elt. e ∈ result ↔ e ∈ l ∨ e ∈ r }

= mergeTree l r

removeRoot Empty = fail

This definition is much nicer. The postcondition in the first clause can refer to the results
of the top-level pattern matching and does not need to do one itself. Furthermore, the
second clause is self-explainable, so that we can omit the specification altogether.

However, from the verification point of view, something unusual is happening here.
As we push the postcondition down the first branch of the pattern matching, we expose
a part of the implementation (namely, the pattern matching itself) to the client code.
Whenever removeRoot is called in our program, the VC for that call needs to perform
the case analysis on the tree parameter in order to access the postcondition. Even more
drastically, the second branch contains no specification at all, and so the caller’s VC has
to “inline” the entire second clause at the call site and prove that it is never reached.

What we did in this definition of removeRoot, is we moved the abstraction barrier
inwards from the entry-exit boundary of a function, and even omitted it entirely on some
of the execution paths. The question is, what are the rules of VC generation for programs
with freely moving abstraction barriers? What if we do more in the exposed part of the
code than just pattern matching or failure?

In this paper, we propose a formalism for computation and specification that intends
to answer this question. We present a programming language called Coma that is small
enough to comfortably study its properties, yet expressive enough to serve as a practical
intermediate verification language (IVL) for real-life applications. Coma programs are
written in the continuation-passing style—the name Coma is short for Continuation
Machine—which allows us to capture with just a few constructions the standard control
structures: sequence, conditionals, loops, function calls, exception handling.

Specification annotations in Coma take the form of assertions mixed with executable
code. Abstraction barriers are made explicit, as special tags that separate the “interface”
part of a subroutine, which is verified at every call site, from the “implementation” part,
which is verified only once, at the definition site.

Let us acquaint ourselves with this approach through a few examples. Here, we do
not yet use the minimalistic syntax of Coma and stay with familiar ML-like constructs.



Coma, an Intermediate Verification Language with Explicit Abstraction Barriers 3

First, consider a simple wrapper for the Unix exit function, which expects an 8-bit
unsigned integer and does not return to the caller. On the left, we show the tradi-
tional contract-based specification, and on the right, its rendition in the style of Coma:

let wrapExit (r: int)
requires { 0 ≤ r < 256 }

= Unix.exit r

let wrapExit (r: int)
= assert { 0 ≤ r < 256 };
(↑ Unix.exit r)

In Coma, the precondition moves into the function body as an assertion which precedes
the actual implementation, and we hide the latter under the explicit abstraction barrier
denoted ↑. Since the assertion is put above the barrier, it must be verified at every call
of wrapExit, whereas the rest of the body is invisible to the caller and produces no
proof obligations at call sites. On the definition side, the instructions above the barrier
are admitted without verification—which amounts here to simply assuming the asserted
property—and the code under the barrier is verified under this assumption. Thus the VC
for the definition of wrapExit is ∀r.0 ≤ r < 256 → 𝜑, where 𝜑 is the VC of the call
Unix.exit r, whatever it might be.

The representation of postconditions in Coma is more involved, since we need to
place them above the abstraction barrier (otherwise, the postcondition would be hidden
from the caller), but the actual exit points are in the code below the barrier. We get
around this complication by treating the postcondition of a function as the precondition
of its continuation. Consider the following function, which, once again, in shown with
a traditional specification on the left and rewritten in the Coma style on the right:

let triple (x: int) : int
ensures { result = 3 · x }

= x + x + x

let triple (x: int) (ret: int →⊥)
= let out (y: int) = assert { y = 3 · x };

(↑ ret y)
in (↑ out (x + x + x))

On the Coma side, the continuation of triple is explicit, as a continuation parameter
named ret. A locally defined function out provides a precondition for ret, similarly to
wrapExit above. The definition of out is above the barrier in triple, and is verified
whenever triple is called. This produces a VC of the form ∀y.y = 3 · x → 𝜑, where
𝜑 is the VC of ret y, that is, the verification condition of the rest of the computation,
which follows the call of triple and is parametrized by the value returned. Note that
this is exactly how a classical weakest-precondition calculus would handle calls of the
triple function on the left-hand side. Conversely, when we verify the implementation
of triple, the definition of out is admitted without proof, and we only need to verify
the call of out under the barrier. This amounts to proving that x + x + x is equal to 3 · x.

The flexibility and expressive power of explicit abstraction barriers become apparent
when we implement the removeRoot function in the same fashion:

let removeRoot (t: tree) (ret: tree →⊥) = match t with
| Node l _ r →

let out (s: tree) = assert { ∀e:elt. e ∈ s ↔ e ∈ l ∨ e ∈ r };
(↑ ret s)

in (↑ out (mergeTree l r))
| Empty → fail
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Coma source higher-order recipe first-order VC
VCgen (∁𝔭

𝔡
)

Sec. 4
evaluation (◦)

Sec. 3

Fig. 1: Verification condition generation in Coma.

Here, the postcondition and the abstraction barrier are put inside the first branch of the
match operation, and the second branch contains no assertions or barriers. This means
that the pattern matching and the inadmissibility of Empty are part of the interface of
removeRoot, and will appear in the VC for every individual call of the function.

For non-recursive functions, the barriers can be omitted entirely. In this case, there
are no proof obligations generated at the definition site, and the code of the function is
effectively inlined during the computation of verification conditions at the call sites.

Coma is meant to serve as an internal language in program verification tools, rather
than as a source language for human programmers. The conversion into continuation-
passing style, the introduction of wrapper functions for postconditions, and the placement
of barriers should be all performed automatically during translation from the front-end
language. For example, when a source function is supplied with a contract, the barriers
would protect the entire function body, as for wrapExit and triple above. A function
without a contract would be translated as is, without barriers, and included transparently
in the callers’ verification conditions. For more complex specifications, like that of
removeRoot, the front-end language should allow the programmer to express their
intent through other means, such as multi-clause definitions, local contracts, etc.

Generation of verification conditions for Coma is a two-stage process, summarized
in Fig. 1. A Coma program is first translated into a logical proposition, called a recipe.
Recipes are formulas in a special higher-order logic, with an additional neutralization
operator which is used for the parts of the code that are admitted without verification.
An evaluation procedure, defined as an abstract machine à la Krivine, converts recipes
into first-order formulas, suitable for automated proving. For Coma functions specified
in a traditional manner, with the barrier at the entry-exit boundary, the resulting proof
obligations are similar to those produced by a classical weakest-precondition calculus.
However, we can also benefit from the intermediate higher-order form of our verification
conditions, and factorize selected subformulas during evaluation. In this way, we curb
the well-known exponential growth of classical weakest preconditions, and obtain proof
obligations similar to the compact verification conditions of Flanagan and Saxe [7].

We introduce the logic of recipes and the evaluation operator ◦ in Sec. 3, together
with a number of properties of this logic. The rules of verification condition generation,
in the form of a VC operator ∁𝔭

𝔡
, are given afterwards in Sec. 4. The soundness of our

VC generation method is stated in Theorem 3.
We implemented a VC generator for Coma programs and performed several case

studies, two of which are presented here. While in this paper we focus on the pure
fragment, our implementation also supports first-class alias-free mutable variables with
effect inference and monadic translation into the pure core language. This implementa-
tion currently serves as a back-end for Creusot, a tool for deductive verification of Rust
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programs [5]. Of particular interest for Creusot is Coma’s ability to automatically infer
the contracts of simple Rust closures (anonymous functions). This and other features
are presented in more detail in Section 5.

To summarize, here are the main contributions of our work:

– a new intermediate verification language with higher-order functions and explicit
abstraction barriers (Section 2);

– a rigorously defined and proved verification condition generator (Sections 3 and 4);
– a working implementation with numerous added features, including alias-free muta-

ble variables, compact VC formulas via subgoal factorization, pre- and postcondition
inference, etc. (Section 5);

– two non-trivial case studies: a second-order regular expression engine (Section 6)
and a sorting algorithm written in x86-64 assembly code (Section 7).

An extended version of this paper, containing additional technical definitions and
detailed proofs is available online [15].

2 Syntax and Semantics of Coma

The building blocks of Coma are expressions, which perform computations, and terms,
which represent data. Expressions and terms are distinct syntactic entities: a term can
be passed as an argument to an expression, but an expression cannot reduce to a term.
An expression can be encapsulated in a named or anonymous handler (which is what
we call subroutines), and either invoked directly or passed as a continuation argument
to another expression.

Terms are composed of variables, constants, and pure total operations, provided that
they have the same meaning in executable code and in specification. In theory, it would
be possible to restrict the syntax of terms to variables and literal values, and delegate
all computation to handlers, either predefined or introduced by the user. Still, for the
sake of convenience, we admit in terms a handful of basic operations on unbounded
integers, Booleans, and polymorphic finite sequences and binary trees. To handle type
polymorphism, we treat types as a special kind of data: type expressions are considered
to be terms of type Type, and we do not make a formal distinction between term and
type variables. We denote variables with letters 𝑥, 𝑦, α, β (the latter two being reserved
for types), and terms with 𝑠, 𝑡, 𝜏, 𝜃 (again, the latter two being reserved for types). For
specification, we use first-order formulas, denoted 𝜑 and 𝜓, which may contain variables
and terms, but not handlers. By a slight abuse of notation, Boolean terms are accepted
as atomic formulas.

Handlers accept term parameters (which includes type parameters) and handler pa-
rameters, also called continuation parameters or outcomes. The list of formal parameters
of a handler is called its type signature. Since we adopt the continuation-passing style,
handlers do not have return values. Handlers that have no parameters are said to have a
void type signature, written with the symbol □. We use letters 𝜋 and 𝜚 to denote type
signatures, and letters ℎ, 𝑔, 𝑓 for handler names.

We assume to have access to a number of predefined primitive handlers, which form
the “standard library” of Coma. Here are the type signatures of five primitive handlers
that we use throughout this paper:
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type signature: 𝜋, 𝜚 F 𝑥 : 𝜏 𝑔 : 𝜚 parameter list

handler: 𝑘, 𝑜 F ℎ handler symbol
| 𝜋 → 𝑑 anonymous handler

expression: 𝑒, 𝑑 F 𝑘 𝑠 𝑜 handler call
| 𝑒 / ℎ 𝜋 = 𝑑 handler definition
| { 𝜑 } 𝑒 assertion
| ↑ 𝑒 black-box barrier
| ↓ 𝑒 white-box barrier

Fig. 2: Handlers and expressions.

if : (c:bool) (then:□) (else:□)
unTree : (α:Type) (t:tree α) (onNode:(l:tree α) (v:α) (r:tree α)) (onEmpty:□)

get : (α:Type) (s:seq α) (i:int) (return:(v:α))
halt : □
fail : □

Handler if makes a choice between two continuations, represented by nullary outcomes
then and else, depending on the condition c. Handler unTree inspects a binary tree t:
if it is a node, then its datum and two subtrees are passed to the onNode continuation,
otherwise onEmpty is called. Handler get retrieves the i-th element of sequence s and
passes it to the continuation. This operation is allowed only when i is a valid index of s.
Handler halt stops the computation. Finally, fail is an equivalent of assert false,
it represents code that should never be reached in execution.

By allowing Coma computations to have multiple outcomes, we can represent as
first-class entities what usually has to be hardwired into the core syntax of programming
languages: conditionals and pattern matching. Handlers halt and fail are also note-
worthy in this regard: as they do not accept continuation parameters, we know simply
by looking at their signature that they cannot ever return control to the caller.

Type signatures are identified modulo parameter renaming. For example, the signa-
ture of get can be equivalently written as (β:Type)(l:seq β)(k:int)(ret:(e:β)).
Each parameter binds the corresponding symbol in the types of subsequent parameters.
This only matters for variables, as handler symbols cannot occur in type annotations.

The order of a type signature 𝜋 (and, by extension, of any handler with that signature)
is defined recursively: if 𝜋 has no continuation parameters, it is of order zero; otherwise,
the order of 𝜋 is one plus the highest order of its outcomes. The length and order of a type
signature are invariant with respect to type instantiation: handlers can be polymorphic
only in the data types.

Figure 2 presents the syntax of Coma expressions. An expression is an application
of a named or anonymous handler to a list of arguments, on top of which we can put
recursive handler definitions, logical assertions, and two barriers, denoted ↑ and ↓, and
called black-box and white-box, respectively. Handler definitions are placed to the right
of the underlying expression; the slash symbol can be read as “where”. The barriers
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ℎ:𝜋 ∈ Γ

Γ ⊢ ℎ : 𝜋
(T-Sym)

Γ ⊢ 𝑒 : □
Γ ⊢ □ → 𝑒 : □

(T-Void)

Γ ⊢ 𝑘 𝑠 : (𝑥:𝜏) 𝜋 Γ ⊢ 𝑡 : 𝜏
Γ ⊢ 𝑘 𝑠 𝑡 : 𝜋 [𝑥 ↦→ 𝑡] (T-AppT)

Γ, 𝑥:𝜏 ⊢ 𝜋 → 𝑒 : 𝜋
Γ ⊢ (𝑥:𝜏) 𝜋 → 𝑒 : (𝑥:𝜏) 𝜋 (T-ParT)

Γ ⊢ 𝑘 𝑠 𝑜 : (𝑔:𝜚) 𝜋 Γ ⊢ 𝑘′ : 𝜚
Γ ⊢ 𝑘 𝑠 𝑜 𝑘′ : 𝜋

(T-AppH)
Γ, 𝑔:𝜚 ⊢ 𝜋 → 𝑒 : 𝜋

Γ ⊢ (𝑔:𝜚) 𝜋 → 𝑒 : (𝑔:𝜚) 𝜋 (T-ParH)

Γ ⊢ 𝜑 : Prop Γ ⊢ 𝑒 : □
Γ ⊢ {𝜑} 𝑒 : □

(T-Prop)
Γ, ℎ:𝜋 ⊢ 𝜋 → 𝑑 : 𝜋 Γ, ℎ:𝜋 ⊢ 𝑒 : □

Γ ⊢ 𝑒 / ℎ 𝜋 = 𝑑 : □
(T-Defn)

Γ ⊢ 𝑒 : □
Γ ⊢ ↑ 𝑒 : □

(T-Bbox)
Γ ⊢ 𝑒 : □
Γ ⊢ ↓ 𝑒 : □

(T-Wbox)

Fig. 3: Typing rules for expressions.

guide the generation of verification conditions, and do not affect execution. The black-
box barrier is the abstraction barrier, which separates the exposed “interface” part of a
handler definition from the hidden “implementation” part. The white-box barrier is an
auxiliary construction that exposes the whole underlying expression. We use letters 𝑒

and 𝑑 to denote expressions, and letters 𝑘 and 𝑜 to denote handlers.
Type signatures serve as types for expressions, enumerating the expected arguments;

in particular, a fully applied handler has type □. Typing contexts, denoted Γ and Δ, are
sequences of type bindings of the form 𝑥:𝜏 and 𝑔:𝜚. A typing context is well-formed if
no symbol is bound twice, and every variable type either is Type or has type Type with
respect to the preceding bindings.

The typing rules for expressions are given in Fig. 3. In a judgement Γ ⊢ 𝑒 : 𝜋, the
typing context is implicitly required to be well-formed. We consider as given the typing
relations for terms and formulas, respectively denoted Γ ⊢ 𝑠 : 𝜏 and Γ ⊢ 𝜑 : Prop; refer
to the extended version [15, App. A] for the fragment used in this paper. Notice that
bodies of handler definitions and anonymous handlers have to be fully applied. Thus, an
anonymous handler 𝜋 → 𝑑 always has type 𝜋, modulo parameter renaming. As with type
signatures, we identify expressions modulo renaming of bound symbols.

The initial typing context Γprim binds the primitive handlers to their respective type
signatures. An expression 𝑒 is called a program when Γprim ⊢ 𝑒 : □.

We define a small-step operational semantics for Coma as a reduction relation −→.
The reduction rules are shown in Fig. 4. We write 𝑒//Λ to identify an expression under
a series of nested handler definitions, where Λ is a list of definitions, possibly empty. In
other words, 𝑒//ℎ1 𝜋1 = 𝑑1, . . . , ℎ𝑛 𝜋𝑛 = 𝑑𝑛 stands for 𝑒 / ℎ1 𝜋1 = 𝑑1 / . . . / ℎ𝑛 𝜋𝑛 = 𝑑𝑛.

The rule E-Sym expands handler definitions. We assume that no handler is defined
in Λ twice, as we can always rename bound handlers. The rules E-AppT and E-AppH
perform β-reduction. The rule E-AppC turns an anonymous handler argument into a local
handler definition. This is done in a capture-safe manner: we expect that the handler
symbol 𝑔 does not occur freely in 𝑑 or in 𝑜. The white-box barrier over 𝑑 is needed to
preserve the verification condition of the program, as we show later.
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ℎ 𝜋 = 𝑑 ∈ Λ

ℎ 𝑠 𝑜 //Λ −→ (𝜋 → 𝑑) 𝑠 𝑜 //Λ (E-Sym)

((𝑥:𝜏) 𝜋 → 𝑒) 𝑡 𝑠 𝑜 //Λ −→ (𝜋 → 𝑒) [𝑥 ↦→ 𝑡] 𝑠 𝑜 //Λ (E-AppT)

((𝑔:𝜚) 𝜋 → 𝑒) 𝑓 𝑜 //Λ −→ (𝜋 → 𝑒) [𝑔 ↦→ 𝑓 ] 𝑜 //Λ (E-AppH)

((𝑔:𝜚) 𝜋 → 𝑒) (𝜚 → 𝑑 ) 𝑜 //Λ −→ (𝜋 → 𝑒) 𝑜 /𝑔 𝜚 = ↓ 𝑑 //Λ (E-AppC)

□ → 𝑒 //Λ −→ 𝑒 //Λ (E-Void)

↑ 𝑒 //Λ −→ 𝑒 //Λ (E-Bbox)

↓ 𝑒 //Λ −→ 𝑒 //Λ (E-Wbox)

⊨ 𝜑

{𝜑} 𝑒 //Λ −→ 𝑒 //Λ
(E-Prop)

ℎ is not free in 𝑒

𝑒 / ℎ 𝜋 = 𝑑 //Λ −→ 𝑒 //Λ
(E-Gc)

⊨ 𝑠

if 𝑠 𝑘 𝑜 //Λ −→ 𝑘 //Λ
⊨ ¬𝑠

if 𝑠 𝑘 𝑜 //Λ −→ 𝑜 //Λ

⊨ 𝑡 = Node 𝑠1 𝑠2 𝑠3
unTree 𝜏 𝑡 𝑘 𝑜 //Λ −→ 𝑘 𝑠1 𝑠2 𝑠3 //Λ

⊨ 𝑡 = Empty
unTree 𝜏 𝑡 𝑘 𝑜 //Λ −→ 𝑜 //Λ

⊨ 0 ≤ 𝑠2 < length 𝑠1 ⊨ 𝑠1[𝑠2..𝑠2 +1] = [𝑡]
get 𝜏 𝑠1 𝑠2 𝑘 //Λ −→ 𝑘 𝑡 //Λ

Fig. 4: Operational semantics.

The rule E-Prop requires the asserted formula 𝜑 to be valid before proceeding with
the execution. The validity judgement ⊨ 𝜑 is made within the standard model for our
data types: integers, Booleans, sequences and binary trees. Of course, the validity of
an arbitrary proposition cannot be effectively verified in a practical implementation.
However, our purpose here is different: we define the operational semantics of Coma
in order to state and prove the correctness of our verification procedure—in particular,
that a program with a valid verification condition cannot get stuck during its execution
because of a failed assertion.

The rule E-Void replaces a nullary anonymous handler by its body. The barriers are
ignored during execution (rules E-Bbox and E-Wbox). Finally, the rule E-Gc prunes the
context by removing unreachable handler definitions. This rule commutes with the rest
of the rules, making Coma non-deterministic, yet still strongly confluent.1 We can define
the operational semantics of Coma without the E-Gc rule; however, it helps keeping our
definition context clean by removing local handler definitions once the parent handler
finishes its computation.

We also postulate the evaluation rules for the primitive handlers. As for E-Prop,
the application of these rules depends on validity of logical properties that express the
pre- and postcondition of the primitives. For example, the Boolean condition of an if
must be valid for the evaluation to progress along the first outcome (as mentioned in the
beginning of the section, we admit Boolean terms as atomic formulas). In the rules for
unTree, the function symbols Node and Empty are the constructors of the tree type. In

1 Modulo semantic equality of answer terms during evaluation of primitive handlers; see below.
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product (a b: int) (return (c: int))
= { b ≥ 0 }

(↑ loop a b 0
/ loop (p q r: int)

= { p · q + r = a · b ∧ q ≥ 0 }
(↑ if (q > 0) (→ if (q mod 2 = 1) (→ next (r + p)) (→ next r)

/ next (s: int) = loop (p + p) (q div 2) s)
(→ break r)))

/ break (c: int) = { c = a · b } (↑ return c)

Fig. 5: Russian Peasant Multiplication in Coma.

the rule for get, we use the (total) slice operator on sequence 𝑠1 to isolate the element
at the position 𝑠2, which must be a valid index in 𝑠1. The answer terms in the rules for
unTree and get can be any ground terms that validate the rule premises: for example,
the expression get int [42] 0 return //Λ can reduce both to return 42 //Λ and
return 6*7 //Λ. While we could introduce some form of normalization to avoid this
syntactical divergence, there is no need for that, since all conditions in our evaluation
rules are expressed in terms of semantic validity. Finally, halt and fail represent the
final states of a computation and cannot be evaluated.

Coma is a type-safe language. Type preservation is easy to establish, either through
a direct proof or by embedding in a more expressive framework like System F𝜔 or CoC.
As for the progress property, the blocking semantics of assertions limits it to programs
with a valid verification condition; and so we defer this subject until Section 4.

We conclude with two examples. First, we rewrite removeRoot in proper Coma:

removeRoot (t: tree) (return (s: tree)) =
unTree t ((l: tree) (_: elt) (r: tree) →

(↑ mergeTree l r out)
/ out (s: tree) = { ∀e:elt. e ∈ s ↔ e ∈ l ∨ e ∈ r }

(↑ return s))
fail

Just like in Sec. 1, the implementation starts with a case analysis on the tree parameter t,
using the primitive unTree hanlder. The two branches of the case analysis are repre-
sented, respectively, by an anonymous handler, which is called when t is a binary node,
and the fail primitive, invoked when t is Empty. The anonymous handler contains a
call of mergeTree, which we assume to be available. The result of mergeTree is passed
to a wrapper handler out which asserts the postcondition of the first branch, before
calling the continuation parameter of removeRoot.

In Fig. 5, we show the Russian Peasant Multiplication algorithm written in Coma.
This code is specified in a more traditional manner: the entire implementation of the
product handler is put behind the abstraction barrier. Left in the interface part are
the starting assertion {b ≥ 0}, which naturally becomes the precondition of product,
and the wrapper handler break, which plays the same role as out in removeRoot, and
whose precondition {c = a · b} is the postcondition of product.
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The implementation defines and calls a recursive handler named loop. This handler
does not return to the caller: to do that, it would need to receive a continuation parameter
and call it, like removeRoot and product do. Instead, loop escapes by calling break
at the end of computation. In this respect, loop behaves indeed rather like a loop than a
recursive function: its continuation is determined statically, by its lexical context, rather
than dynamically by its caller. Consequently, there is no distinct postcondition asso-
ciated to loop: in Coma, postconditions are preconditions of continuation parameters
(attached via wrapper handlers like out and break), and loop has none thereof. And
the precondition of loop, placed above the barrier, is just the loop invariant.

In practice, the majority of Coma programs would be generated by mechanical
translation from existing languages like OCaml or Rust. Part of this translation would be
a CPS transformation, required by our language. While in most cases, this transformation
is not problematic, and allows us to reduce a large number of control structures to just
two—definitions and calls—there are limits to what can be easily translated into Coma.
Consider, for example, an OCaml exception that carries a closure:

exception E of (int → int)

In Coma, exception-raising functions are written as handlers that have multiple contin-
uation parameters: one for the normal outcome, and one for each exception that might
be raised in the handler code. However, if the closures passed with the exception E were
themselves liable to raise E, we would not be able to give them a finite type in Coma.
Incidentally, it is not a coincidence that higher-order exceptions can be used to realize
fixed point computations without explicit recursion.

3 The Logic of Recipes

In their final form, verification conditions for Coma programs are first-order logical
formulas, which we can handle with the usual methods of automated and interactive
theorem proving. Their generation, however, goes through an intermediate stage, where
a preliminary higher-order verification condition, called recipe, is constructed and then
transformed, deterministically and in a finite number of steps, into the first-order form.

Recipes are formulas in a particular variety of higher-order logic, where bound
predicate variables represent verification conditions of individual handlers and can only
appear in a positive position. We denote recipes with letters Φ,Ψ,Υ. The syntax of
recipes is given in Fig. 6. In recipes, handler symbols become predicate variables of the
same name and arity as the original handler. The symbol 0 is the verification condition
of fail, a logical contradiction. The neutralization operator, denoted ♮, suppresses
proof obligations in the underlying recipe. Finally, notice that the antecedent in an
implication is not a recipe, but a first-order formula, which cannot have occurrences of
handler symbols. We write λ𝜋.Φ and ∀𝜋.Φ to denote a series of nested λ-abstractions
or quantifications. By convention, λ□.Φ and ∀□.Φ are the same as Φ.

Universal quantification over a predicate variable is defined recursively, as an instan-
tiation with a joker recipe 0𝜋 . A joker recipe is the verification condition of a handler
of which nothing is known: on any input, the handler may fail or it may call any of its
outcomes with arbitrary arguments. On a void type signature, the joker 0□ is simply 0.
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Φ,Ψ,Υ F ℎ | Φ 𝑠 | λ 𝑥 : 𝜏 .Φ | ∀ 𝑥 : 𝜏 .Φ | Φ ∧ Ψ

| 0 | Φ Ψ | λ 𝑔: 𝜚.Φ | 𝜑 → Φ | ♮ Φ

∀ℎ:𝜋 .Φ ≜ (λℎ:𝜋 .Φ) 0𝜋

0𝜋 ≜ λ𝜋. 0 ∧
∧

( 𝑓:𝑥:𝜏 𝑔:𝜚) ∈ 𝜋

∀𝑥:𝜏.∀𝑔:𝜚. 𝑓 𝑥 𝑔̄

Fig. 6: Preliminary verification conditions (recipes).

A fully applied recipe is a logical proposition, which is why we disregard the result
type (that is, Prop) and use type signatures once again as types for predicate variables and
recipes. The typing rules are given in the extended version [15, Fig. 7]. Unlike implication
and universal quantification, the conjunction connective applies to any two recipes of
the same type, and not only to fully applied recipes. The neutralization operator applies
to recipes of any type. We identify recipes modulo renaming of bound symbols.

The semantics of recipes is given by means of a Krivine-style abstract machine [10]
that converts a fully applied recipe into a first-order formula, where all bound predicate
variables are eliminated. We have chosen this approach both for theoretical and practical
reasons. First, the properties of recipes are naturally proved using logical relations [16],
which are straightforward to express in this setting. Second, our implementation of a
verification condition generator for Coma is based on the same abstract machine. In the
rest of the section, we introduce this evaluator and establish some of its properties.

A cell is a triplet ⟨𝑏,Σ,Φ⟩, where Φ is a recipe, Σ a cell context, binding every free
handler symbol in Φ to a cell, and 𝑏 a Boolean value. Such a cell can be converted into
a recipe by replacing the free handler symbols in Φ with the corresponding converted
cells from Σ. We assign the type signature of the resulting recipe to the initial cell. In
what follows, we denote cells with letters 𝐶 and 𝐷, and assume that all cells and recipes
under consideration are well-typed.

We associate a specification recipe to each primitive handler:

Ψif ≜ λc:bool. λthen:□. λelse:□. (c → then) ∧ (¬c → else)
ΨunTree ≜ λα:Type. λt:tree α . λonNode: (l:tree α) (v:α) (r:tree α) . λonEmpty:□.

(∀l:tree α .∀v:α .∀r:tree α . t = Node l v r → onNode l v r) ∧
(t = Empty → onEmpty)

Ψget ≜ λα:Type. λs:seq α . λi:int. λreturn: (v:α) .
0 ≤ i < length s ∧ ∀v:α . s[i..i+1] = [v] → return v

Ψhalt ≜ ♮0 Σprim ≜ [if ↦→ ⟨⊥,∅,Ψif⟩,
Ψfail ≜ 0 unTree ↦→ ⟨⊥,∅,ΨunTree⟩, get ↦→ ⟨⊥,∅,Ψget⟩,

halt ↦→ ⟨⊥,∅,Ψhalt⟩, fail ↦→ ⟨⊥,∅,Ψfail⟩]

The initial cell context Σprim binds primitive handlers to their respective specifications.
The depth of a cell 𝐶 = ⟨𝑏,Σ,Φ⟩ is zero if its cell context Σ is empty; otherwise, it

is one plus the maximum depth of the cells in Σ. The neutralization of 𝐶, denoted ♮𝐶,
is the cell ⟨⊤, ♮Σ,Φ⟩, where ♮Σ is obtained by neutralizing every cell in Σ. Obviously,
neutralization does not affect the type or depth of a cell.
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⟨𝑏, Σ, 0⟩ ◦ 𝜀 ≜ 𝑏 ⟨𝑏, Σ,Φ∧Ψ⟩ ◦ ℓ ≜ ⟨𝑏,Σ,Φ⟩ ◦ ℓ ∧ ⟨𝑏,Σ,Ψ⟩ ◦ ℓ
⟨𝑏, Σ, ℎ⟩ ◦ ℓ ≜ Σ(ℎ) ◦ ℓ ⟨𝑏, Σ, 𝜑 → Φ⟩ ◦ 𝜀 ≜ 𝜑 → ⟨𝑏,Σ,Φ⟩ ◦ 𝜀

⟨𝑏, Σ, ♮Φ⟩ ◦ ℓ ≜ ⟨⊤, ♮Σ,Φ⟩ ◦ ℓ ⟨𝑏, Σ,∀𝑥:𝜏.Φ⟩ ◦ 𝜀 ≜ ∀𝑥:𝜏.⟨𝑏,Σ,Φ⟩ ◦ 𝜀
⟨𝑏, Σ,Φ 𝑠⟩ ◦ ℓ ≜ ⟨𝑏,Σ,Φ⟩ ◦ 𝑠, ℓ ⟨𝑏, Σ, λ𝑥:𝜏.Φ⟩ ◦ 𝑠, ℓ ≜ ⟨𝑏, Σ,Φ[𝑥 ↦→ 𝑠]⟩ ◦ ℓ
⟨𝑏, Σ,ΦΨ⟩ ◦ ℓ ≜ ⟨𝑏,Σ,Φ⟩ ◦ ⟨𝑏,Σ,Ψ⟩, ℓ ⟨𝑏, Σ, λℎ:𝜋.Φ⟩ ◦ 𝐶, ℓ ≜ ⟨𝑏, Σ ⊎ [ℎ ↦→ 𝐶],Φ⟩ ◦ ℓ

Fig. 7: Recipe evaluation.

A stack is a mixed sequence of terms and cells. An empty stack is denoted 𝜀. The
neutralization of a stack ℓ, denoted ♮ℓ, is obtained by neutralizing every cell in ℓ. We
say that a stack is aligned with a cell, when the length of the stack and the types of its
elements coincide with the cell’s signature. In other words, an aligned stack contains
appropriate arguments for the cell.

An 𝑛-ary relation 𝑅 on same-typed cells holds on stacks ℓ1, . . . , ℓ𝑛 when they all have
the same length and type signature, and for each position 𝑖, if ℓ1𝑖 , . . . , ℓ𝑛𝑖 are terms, then
they are all identical, and if they are cells, then both 𝑅(ℓ1𝑖 , . . . , ℓ𝑛𝑖) and 𝑅(♮ℓ1𝑖 , . . . , ♮ℓ𝑛𝑖)
are true. Similarly, 𝑅 holds on cell contexts Σ1, . . . , Σ𝑛 when they bind the same handler
names, and for every bound ℎ, both 𝑅(Σ1 (ℎ), . . . , Σ𝑛 (ℎ)) and 𝑅(♮Σ1 (ℎ), . . . , ♮Σ𝑛 (ℎ))
are true. It is easy to see that 𝑅(Σ1, . . . , Σ𝑛) implies 𝑅(♮Σ1, . . . , ♮Σ𝑛), as ♮♮𝐶 = ♮𝐶.

As a special case of the above, any property of cells is said to hold for a stack ℓ or
a cell context Σ whenever for every cell 𝐶 in ℓ or Σ, both 𝐶 and ♮𝐶 have this property.
Furthermore, if the property holds for a cell context Σ, then it also holds for ♮Σ.

The evaluation operator ◦, defined in Fig. 7, applies a cell to an aligned stack and
produces a first-order logical formula. In the rule for ∀𝑥:𝜏.Φ, we assume that 𝑥 does
not occur in the cell context Σ, to avoid collisions.

Theorem 1. The evaluation operator ◦ is defined on all aligned cells and stacks.

Proof. We say that a cell 𝐶 is normalizing if for any aligned normalizing stack ℓ, the
evaluation 𝐶 ◦ ℓ is defined. This definition is well-founded, because every cell in ℓ is of
lower order than 𝐶. We need to show that all cells (ergo, all stacks) are normalizing. In
fact, it suffices to prove that every cell ⟨𝑏, Σ,Υ⟩ is normalizing, if its cell context Σ is
normalizing. Afterward, a simple induction over cell depth allows us to conclude.

We proceed by induction over the size of Υ, counting only the subrecipes, so that
term substitutions do not affect the size. Take an arbitrary aligned normalizing stack ℓ.

Case Υ is 0. As 0 is □-typed, ℓ has to be empty, and ⟨𝑏, Σ, 0⟩ ◦ 𝜀 is defined.
Case Υ is ℎ. Since every cell in Σ is normalizing, the evaluation Σ(ℎ) ◦ ℓ is defined.
Case Υ is ♮Φ. The context ♮Σ is normalizing, and the induction hypothesis applies.
Case Υ is ΦΨ. Let 𝐷 be ⟨𝑏, Σ,Ψ⟩. Since ♮Σ is normalizing, both cells, 𝐷 and ♮𝐷,

are normalizing by the induction hypothesis. As the cell ⟨𝑏, Σ,Φ⟩ is also normalizing
by the induction hypothesis, the evaluation ⟨𝑏, Σ,Φ⟩ ◦ 𝐷, ℓ is defined.

Case Υ is λℎ:𝜋.Φ. Then the stack ℓ is of the form 𝐷, ℓ′, where both 𝐷 and ♮𝐷 are
normalizing. Thus, Σ ⊎ [ℎ ↦→ 𝐷] is normalizing and the induction hypothesis applies.

In every other case, we pick a rule for ◦ and apply the induction hypothesis. □
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A cell 𝐶 is said to be neutral, if for any aligned neutral stack ℓ, the formula 𝐶 ◦ ℓ is
valid. Just as above, this recursive definition is well-founded, because every cell in ℓ is
of lower order than 𝐶.

Lemma 1. Any neutralized cell ♮𝐶 is neutral.

The proof of this and following lemmas can be found in the extended version [15, Sec. 3].
A cell 𝐶1 entails 𝐶2, denoted 𝐶1 ⇛ 𝐶2, when they have the same type and for any

aligned stacks ℓ1 and ℓ2 such that ℓ1 ⇛ ℓ2, we have 𝐶1 ◦ ℓ1 ⇒ 𝐶2 ◦ ℓ2. Here and below,
the symbol ⇒ stands for logical consequence, and ⇔ for logical equivalence, under the
same standard model used for assertions. Cell 𝐶1 is equivalent to 𝐶2, denoted 𝐶1 ≡ 𝐶2,
when 𝐶1 ⇛ 𝐶2 and 𝐶2 ⇛ 𝐶1.

Lemma 2. Cell entailment is reflexive and transitive.

Lemma 3. Consider two cells of the same type, 𝐶1 and 𝐶2, such that for any aligned
stack ℓ, we have 𝐶1 ◦ ℓ ⇒ 𝐶2 ◦ ℓ. Then 𝐶1 ⇛ 𝐶2.

Note that𝐶1 ⇛ 𝐶2 does not imply ♮𝐶1 ⇛ ♮𝐶2. For example, the cell ⟨⊥,∅, λ𝑔:□.0⟩
entails ⟨⊥,∅, λ𝑔:□. 𝑔⟩, yet, when we apply their neutralizations to ⟨⊥,∅, 0⟩, we obtain
⊤ and ⊥, respectively. Thus, to establish ℓ1 ⇛ ℓ2, we must show pairwise entailment
not only for the cells in the two stacks, but also for their neutralizations.

Given three cells 𝐶1 = ⟨𝑏1, Σ1,Φ⟩, 𝐶2 = ⟨𝑏2, Σ2,Φ⟩, and 𝐶3 = ⟨𝑏3, Σ3,Φ⟩ that have
the same type and the same recipe Φ, we say that 𝐶1 is the fusion of 𝐶2 and 𝐶3 when
𝑏1 = 𝑏2 ∧ 𝑏3 and Σ1 is the fusion of Σ2 and Σ3. Quite obviously, if 𝐶1 is the fusion
of 𝐶2 and 𝐶3, then ♮𝐶1 is the fusion of ♮𝐶2 and ♮𝐶3 (all three are actually the same).
Furthermore, any cell 𝐶 is the fusion of itself and ♮𝐶.

A cell 𝐶1 is a meet of 𝐶2 and 𝐶3 if they all have the same type, the neutralized cells
♮𝐶2 and ♮𝐶3 are equivalent, and for any aligned stacks ℓ1, ℓ2, ℓ3 such that ℓ1 is a meet of
ℓ2 and ℓ3, we have 𝐶1 ◦ ℓ1 ⇔ 𝐶2 ◦ ℓ2 ∧ 𝐶3 ◦ ℓ3.

Lemma 4. If 𝐶1 is the fusion of 𝐶2 and 𝐶3, then 𝐶1 is a meet of 𝐶2 and 𝐶3.

Corollary 1. For any cell 𝐶 and aligned stack ℓ, we have 𝐶 ◦ ℓ ⇔ ♮𝐶 ◦ ℓ ∧ 𝐶 ◦ ♮ℓ.

Corollary 2. Any cell 𝐶 entails ♮𝐶.

Lemma 5. Consider cells 𝐶1, 𝐶2, 𝐶3 of the same type, such that ♮𝐶2 ≡ ♮𝐶3 and for any
aligned stack ℓ, we have 𝐶1 ◦ ℓ ⇔ 𝐶2 ◦ ℓ ∧ 𝐶3 ◦ ℓ. Then 𝐶1 is a meet of 𝐶2 and 𝐶3.

This leads to a surprising distributivity property. Consider a cell 𝐷 = ⟨𝑏, Σ,Φ ∧Ψ⟩
and its conjuncts 𝐷1 = ⟨𝑏, Σ,Φ⟩ and 𝐷2 = ⟨𝑏, Σ,Ψ⟩. If ♮𝐷1 is equivalent to ♮𝐷2, then,
by Lemma 5, 𝐷 is a meet of 𝐷1 and 𝐷2, and ♮𝐷 is a meet of ♮𝐷1 and ♮𝐷2. Then, for
any appropriate cell 𝐶 and stack ℓ, the formula 𝐶 ◦ 𝐷, ℓ is logically equivalent to the
conjunction of 𝐶 ◦ 𝐷1, ℓ and 𝐶 ◦ 𝐷2, ℓ. Informally speaking, we can split a recipe over
any cell conjunction, no matter where it occurs inside the recipe, as long as the conjuncts
have equivalent neutralizations.

Theorem 2. Consider a type signature 𝜋 and a cell 𝐽 = ⟨⊥, Σ, 0𝜋⟩. For every cell 𝐶 of
type 𝜋, we have 𝐽 ⇛ 𝐶 and ♮𝐽 ⇛ ♮𝐶.
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The proof of Theorem 2 is given in the extended version [15, App. B]. This result
justifies our use of joker recipes to represent universal quantification over predicate vari-
ables. Indeed, for any Φ :□ and Ψ : 𝜚, and a type-compatible Σ, the cell ⟨⊥, Σ,∀𝑔:𝜚.Φ⟩
entails ⟨⊥, Σ, (λ𝑔:𝜚.Φ)Ψ⟩, and the same holds for their neutralizations.

In the process of evaluation, we can factorize selected first-order monomorphic cells,
that is, those that only have term parameters whose type is not Type.

Lemma 6. Consider a cell𝐶 = ⟨𝑏, Σ, λ𝑔:(𝑥:𝜏) .Φ⟩ and an aligned stack 𝐷, ℓ, such that
none of the types 𝜏𝑖 is Type. Let 𝐷′ be the cell ⟨⊥,∅, λ𝑥:𝜏. 𝑧1 = 𝑥1 ∧ · · · ∧ 𝑧𝑛 = 𝑥𝑛 → 0⟩
for some fresh variables 𝑧. Then 𝐶 ◦ 𝐷, ℓ ⇔ 𝐶 ◦ ♮𝐷, ℓ ∧∀𝑧:𝜏. (♮𝐶 ◦ 𝐷′, ♮ℓ) ∨ (𝐷 ◦ 𝑧).

The proof of Lemma 6 is given in the extended version [15, App. C]. This lemma
provides us with an alternative evaluation rule for cell arguments which are eligible and
useful to factorize. The latter is a matter of heuristic choice: in our current implemen-
tation, we select non-neutral cells that are used multiple times in the final VC and are
derived from executable code instead of just a sequence of assertions.

The new rule splits the formula 𝐶 ◦ 𝐷, ℓ into two parts. The first part, 𝐶 ◦ ♮𝐷, ℓ,
erases all subgoals stemming from 𝐷. In the second part, the formula ♮𝐶 ◦𝐷′, ♮ℓ erases
all subgoals that are not stemming from 𝐷, and replaces every occurrence of 𝐷 with a
“unification subgoal” 𝐷′, which captures a term substitution in the answer variables 𝑧.
These substitutions are transferred to the single instance of 𝐷 in the formula 𝐷 ◦ 𝑧.

By rewriting the second part as an implication ∀𝑧:𝜏.¬(♮𝐶 ◦ 𝐷′, ♮ℓ) → (𝐷 ◦ 𝑧), we
can see the antecedent as the cumulated logical premise (or the strongest postcondition)
of the context 𝐶 ◦ [ ], ℓ for the continuation in the hole. In the next section, we show
how this rule allows us to produce more compact verification conditions.

4 Verification Condition Generation

Verification conditions for Coma expressions are computed by the operator ∁𝔭

𝔡
, where

Boolean flags 𝔭 and 𝔡 establish the mode:

∁⊤
⊥ : caller verification condition, to verify individual calls of a defined handler.

∁⊥
⊤ : callee verification condition, to prove the correctness of a handler definition.

∁⊤
⊤ : full verification condition, which merges the proof goals of the first two modes.

∁⊥
⊥ : null verification condition, which is always true on fully applied expressions.

The caller mode extracts the specification (or the contract) of a defined handler from its
definition. It treats every assertion as a precondition to verify at call sites, and it stops
at the black-box barrier which separates the “interface” part of the definition from the
hidden “implementation” part. The callee mode, on the contrary, treats every assertion
as a precondition to assume, and verifies the correctness of the implementation part,
after the black-box barrier, under those assumptions. In the full mode, which is the
starting verification mode for Coma expressions, we prove assertions both before and
after a barrier. In the null mode, which is equivalent to stopping verification, no proof
obligations are generated at all. A Coma program 𝑒 is said to be correct, when its fully
evaluated verification condition ⟨⊥, Σprim,∁⊤

⊤ (𝑒)⟩ ◦ 𝜀 is valid.
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∁⊤
𝔡
(ℎ) ≜ ℎ ∁𝔭

𝔡
(𝜋 → 𝑒) ≜ (λ𝜋.∁𝔭

𝔡
(𝑒)) ∧ ♮ (λ𝜋.∁¬𝔭

¬𝔡 (𝑒))

∁⊥
𝔡
(ℎ) ≜ ♮ℎ ∁𝔭

𝔡
(𝑘 𝑠 𝑜) ≜ ∁𝔭

𝔡
(𝑘) 𝑠 ∁𝔭

𝔡
(𝑜1) . . . ∁𝔭

𝔡
(𝑜𝑛)

∁𝔭

𝔡
(↑ 𝑒) ≜ ∁𝔡

𝔡
(𝑒) ∁𝔭

𝔡
({𝜑} 𝑒) ≜ (𝜑 → ∁𝔭

𝔡
(𝑒)) ∧ (𝔭 → ¬𝜑 → 0)

∁𝔭

𝔡
(↓ 𝑒) ≜ ∁𝔭

𝔭 (𝑒) ∁𝔭

𝔡
(𝑒 / ℎ 𝜋 = 𝑑) ≜ let ℎ 𝜋 = ∁⊤

⊥ (𝑑) in ∁𝔭

𝔡
(𝑒) ∧ ∀𝜋.∁⊥

𝔭 (𝑑)

Fig. 8: Verification condition generation.

Figure 8 shows the rules of VC generation. The notation let ℎ 𝜋 = Ψ in Φ in the
rule for handler definitions stands for (λℎ:𝜋.Φ) (λ𝜋.∀ℎ:𝜋.Ψ)—notice the universal
quantifier that covers the occurrences of ℎ in Ψ and ensures that this symbol is bound in
the resulting recipe, just as it is bound in the original Coma expression. In this rule, we
assign the handler’s specification λ𝜋.∀ℎ:𝜋.∁⊤

⊥ (𝑑) to a predicate variable with the same
name ℎ. This recipe is verified every time ℎ is called from the underlying expression 𝑒

or recursively from the definition body 𝑑.
Informally, flag 𝔭 determines whether we should generate proof obligations—prove

assertions, verify handler definitions, ensure the safety of handler calls—at the current
position in the expression. For example, in the rule for {𝜑} 𝑒, we only generate a subgoal
for 𝜑 (expressed as a double negation ¬𝜑 → 0), when 𝔭 is true. Similarly, in the rule
for handler definitions, we verify the correctness of the implementation only when 𝔭 is
true; otherwise, the formula ∁⊥

⊥ (𝑑) always reduces to ⊤. Finally, on handler invocation,
when 𝔭 is false, the corresponding predicate variable is neutralized, which effectively
cancels all proof obligations in the handler’s specification, as 0 becomes evaluated as ⊤.

When we pass through a black-box barrier ↑, the second flag 𝔡 takes the place of 𝔭.
Thus, when we compute the specification of a handler by applying ∁⊤

⊥ to the handler’s
body, we stop at the black-box barrier, where we switch to ∁⊥

⊥, which evaluates to ⊤.
On the other hand, when we verify the correctness of a handler definition using ∁⊥

⊤, we
do not generate proof obligations for assertions and handler calls until we arrive at the
black-box barrier, where we pass into the full mode ∁⊤

⊤ for the rest of the definition.
The white-box barrier ↓ replaces the second flag with 𝔭. This preserves the current

value of 𝔭 for the rest of the expression, regardless of the subsequent barriers.
The rule for handler calls simply propagates the VC operator down to the individual

handlers without changing the mode. Similarly, the rule for anonymous handlers pushes
the VC operator in its current mode under the λ-prefix—however, we must, in addition,
verify the handler in the complementary mode, with both𝔭 and 𝔡 negated. This secondary
verification condition is only concerned with the continuation parameters of the handler,
and not with its proper proof obligations, which is why we neutralize the corresponding
recipe. To see why both conditions are necessary, consider the following Coma code:

crash / crash = ((f:□) → ↑f) fail

This program reduces to fail: we unfold crash (E-Sym), purge the now-unreachable
definition (E-Gc), substitute fail into f (E-AppH), and drop the barrier (E-Bbox). Thus,
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we should not be able to prove it correct. Let us look at the full verification condition:

∁⊤
⊤ (crash / crash = (f → ↑f) fail)

= let crash =∁⊤
⊥ ((f → ↑f) fail) in ∁⊤

⊤ (crash) ∧ ∁⊥
⊤ ((f → ↑f) fail)

= let crash =∁⊤
⊥ (f → ↑f) ∁⊤

⊥ (fail) in crash ∧ ∁⊥
⊤ (f → ↑f) ∁⊥

⊤ (fail)
= let crash = ((λf.∁⊤

⊥ (↑f)) ∧ ♮ (λf.∁⊥
⊤ (↑f))) fail in crash ∧ ∁⊥

⊤ (f → ↑f) (♮fail)
= let crash = ((λf.∁⊥

⊥ (f)) ∧ ♮ (λf.∁⊤
⊤ (f))) fail in crash ∧ ∁⊥

⊤ (f → ↑f) (♮fail)
= let crash = ((λf.♮f) ∧ ♮ (λf.f)) fail in crash ∧ ∁⊥

⊤ (f → ↑f) (♮fail)
= let crash = ((λf.♮f) ∧ ♮ (λf.f)) fail in crash ∧ ((λf.f) ∧ ♮ (λf.♮f)) (♮fail)
≈ (λf.♮f)0 ∧ (♮λf.f)0 ∧ (λf.f) (♮0) ∧ (♮λf.♮f) (♮0)

For the sake of readability, we perform several reductions directly on the recipe in the
last step; it is easy to show that the resulting recipe leads to the same final VC formula.
Out of the four conjuncts, only the second one evaluates to ⊥, and the other three to ⊤.
If the rule for anonymous handlers did not include the second condition ♮λ𝜋.∁¬𝔭

¬𝔡 (𝑑),
we would end up with only the first and the third conjunct, which both evaluate to ⊤.

Let us further illustrate the rules of VC generation on the example from Sec. 1:

triple 14 ((a: int) → { a = 42 } halt) / triple (x: int) (ret r)
= (↑ out (x + x + x)) / out (y: int) = { y = 3 · x } (↑ ret y)

The full verification condition of this expression has the form

let triple (x: int) (ret (r: int)) = ∁⊤
⊥ (𝑒) in

triple 14
(
(λa.(a = 42 → halt) ∧ (⊤ → ¬(a = 42) → 0)) ∧

♮ (λa.(a = 42 → ♮halt) ∧ (⊥ → ¬(a = 42) → 0))
)
∧ ∀x.∀ret.∁⊥

⊤ (𝑒)

where 𝑒 is the body of triple. We can safely drop the secondary verification condition
for the anonymous handler in the continuation of triple. Indeed, it is produced in the
null mode and will evaluate to a tautologically true proof obligation for any argument a.

The caller and callee verification conditions of triple are as follows:

∁⊤
⊥ (𝑒) = let out (y: int) = ∁⊤

⊥ (𝑑) in ♮out (x + x + x) ∧ ∀y.∁⊥
⊤ (𝑑)

∁⊥
⊤ (𝑒) = let out (y: int) = ∁⊤

⊥ (𝑑) in out (x + x + x) ∧ ∀y.∁⊥
⊥ (𝑑)

where 𝑑 is the body of out. And the three VCs of out are as follows:

∁⊤
⊥ (𝑑) = (y = 3 · x → ♮ret y) ∧ (⊤ → ¬(y = 3 · x) → 0) ≈ y = 3 · x

∁⊥
⊤ (𝑑) = (y = 3 · x → ret y) ∧ (⊥ → ¬(y = 3 · x) → 0) ≈ y = 3 · x → ret y

∁⊥
⊥ (𝑑) = (y = 3 · x → ♮ret y) ∧ (⊥ → ¬(y = 3 · x) → 0) ≈ ⊤

On the right we show the first-order formulas to which these recipes evaluate. Notice
that for any predicate ret, the recipe ♮ret y evaluates to a tautology.

Now we can evaluate the verification conditions of triple. Since ♮out evaluates to
a tautology for any argument, the caller VC, ∁⊤

⊥ (𝑒), evaluates to ∀y.y = 3 ·x → ret y.
And the callee VC, ∁⊥

⊤ (𝑒), evaluates to x + x + x = 3 ·x. After simplification, the full VC
of the initial expression is (∀y.y = 3 · 14 → y = 42) ∧ (∀x.x + x + x = 3 · x).
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Verification conditions produced by the ∁⊤
⊤ operator are for partial correctness: they

do not ensure the termination of Coma programs. Here is one possible way to verify
total correctness. Let us say that a handler definition 𝑓 𝑥:𝜏 𝑔:𝜚 = 𝑑 is equipped with
a variant, if there exists an int-typed term 𝑡 [𝑥] such that every occurrence of 𝑓 in 𝑑

is in an expression of the form { 𝑡 [𝑠] < 𝑡 [𝑥] ∧ 0 ≤ 𝑡 [𝑥]} 𝑓 𝑠 𝑜. Here we assume that
variables are not bound twice, so that the variables 𝑥 in the assertion refer to the formal
parameters of 𝑓 . The ordering relation in the assertion is well-founded, therefore, an
infinite tower of recursive calls of 𝑓 is impossible. A practical implementation would, of
course, accept other well-founded relations, such as structural decrease on binary trees,
lexicographic orderings on tuples, etc. While the definition above does not allow us to
use 𝑓 as a handler argument inside 𝑑, this is not a limitation, as we can always move
such occurrences into a local wrapper handler definition.

Below we list the main results about our VC generation procedure. The proofs are
given in the extended version [15, Appendix D].

Lemma 7. For any Coma expression 𝑒, any cell of the form ⟨𝑏, Σ,∁⊥
⊥ (𝑒)⟩ is neutral.

Consequently, any VC of the form ∁⊥
⊥ (𝑒), where 𝑒 is a fully applied expression, can

be safely replaced with a tautological recipe such as ♮0.

Lemma 8. For any Coma expression 𝑒, any cell of the form ⟨𝑏, Σ,∁⊤
⊤ (𝑒)⟩ is a meet of

⟨𝑏, Σ,∁𝔭

𝔡
(𝑒)⟩ and ⟨𝑏, Σ,∁¬𝔭

¬𝔡 (𝑒)⟩ for all 𝔭 and 𝔡.

The fact that ∁⊤
⊤ (𝑒) can be split into ∁⊤

⊥ (𝑒) and ∁⊥
⊤ (𝑒) is the basis of the correctness

preservation theorem:

Theorem 3 (Preservation of Correctness). For any Coma programs 𝑒 and 𝑒′, if 𝑒 is
correct and 𝑒 −→ 𝑒′, then 𝑒′ is correct.

Theorem 4 (Progress). For any correct Coma program 𝑒, either 𝑒 is halt, or 𝑒 −→ 𝑒′

for some program 𝑒′.

In conclusion, let us show some examples of verification conditions. For clarity, we
omit type annotations, inline the specifications of primitive handlers, treat 0 as ⊥ in the
callee mode, and remove trivial subgoals coming from ∁⊥

⊥ (·) or ⊥ → Φ. The caller VC
of removeRoot on page 9, for a given tree t and continuation return, is the recipe

(∀lvr. t = Node l v r → ∀s.(∀e. e ∈ s ↔ e ∈ l ∨ e ∈ r) → return s) ∧
(t = Empty → 0)

This recipe is the specification of removeRoot, instantiated and proved at each call site.
The subrecipe (∀e. e ∈ s ↔ e ∈ l ∨ e ∈ r) → return s is the callee VC for the out
handler. Notice that the assertion {∀e:int. e ∈ s ↔ e ∈ l∨ e ∈ r } does not generate
a subgoal here: as it occurs before the black-box barrier, it is treated as an assumption
in the callee mode.

Here is the callee VC for removeRoot, to be proved for all values of t:

∀lvr. t = Node l v r → mergeTree l r (λs.∀e. e ∈ s ↔ e ∈ l ∨ e ∈ r)
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There is no subgoal generated for the second outcome of unTree, as it does not contain
an abstraction barrier. The predicate argument of mergeTree is the caller VC of out;
this time the assertion does generate a subgoal.

Here is the specification of the product handler in Fig. 5, for given integers a, b and
a continuation return:

(b ̸≥ 0 → 0) ∧ (∀c. c = a · b → return c)

The callee VC for product, to be proved for all values of a and b, is as follows:

b ≥ 0 →
a · b + 0 = a · b ∧ b ≥ 0 ∧
∀pqr. p · q + r = a · b ∧ q ≥ 0 →

(q > 0 →
(q mod 2 = 1 → (p + p) · (q div 2) + r + p = a · b ∧ q div 2 ≥ 0) ∧
(q mod 2 ≠ 1 → (p + p) · (q div 2) + r = a · b ∧ q div 2 ≥ 0)) ∧

(q ≯ 0 → r = a · b)

Notice how this formula coincides with the verification condition for the definition of
product obtained by the traditional weakest-precondition calculus. Consider now the
same VC, when we select the next handler for factorization, as described in Section 3:

b ≥ 0 →
a · b + 0 = a · b ∧ b ≥ 0 ∧
∀pqr. p · q + r = a · b ∧ q ≥ 0 →

(q > 0 →
∀s. ((q mod 2 = 1 ∧ s = r + p) ∨ (q mod 2 ≠ 1 ∧ s = r)) →

(p + p) · (q div 2) + s = a · b ∧ q div 2 ≥ 0) ∧
(q ≯ 0 → r = a · b)

The formula λs.(q mod 2 = 1∧s = r+p) ∨ (q mod 2 ≠ 1∧s = r) is the strongest post-
condition of the expression if (q mod 2 = 1) (→ next (r + p)) (→ next r) with respect
to the continuation next. The method of compact verification conditions proposed by
Flanagan and Saxe [7] aggregates in a similar way the strongest postconditions across
alternative execution paths. The connection between the compact verification conditions
and the classical weakest-precondition calculus was studied by Leino [12]. Our approach
makes this connection even more prominent, as it allows us to derive both forms from
the common precursor verification condition.

5 Implementation

We have implemented the Coma language and its VC generator on top of the Why3
platform [6]. The terms and formulas of Coma are written in the logical language of
Why3. This way, we can make use of logical theories from the Why3 standard library,
and we readily benefit from Why3’s interface with many automated theorem provers. In
addition to what is presented in the previous sections, our implementation offers a few
extensions, described below.
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product (a b: int) { b ≥ 0 } (return (c: int) { c = a · b })
= loop a b 0

/ loop (p q r: int) { p · q + r = a · b ∧ q ≥ 0 }
= if (q > 0) (→ if (q mod 2 = 1) (→ next (r + p)) (→ next r)

/ next (s: int) = loop (p + p) (q div 2) s)
(→ return r)

Fig. 9: Extended handler prototypes.

Extended handler prototypes. To facilitate writing and understanding of Coma pro-
grams, we provide a suitable syntax for writing pre- and postconditions directly in the
handler prototype, as shown in Fig. 9. This notation is desugared into assertions, barri-
ers, and wrapper handlers of the core Coma language; in particular, the code in Fig. 9
is translated into what is shown in Fig. 5. The precondition { b ≥ 0 } in the prototype
of product becomes an assertion put on top of the definition body, now hidden under
a black-box barrier. The same transformation is applied to the precondition of the inner
loop handler. The postcondition { c = a · b }, attached to return, forces creation of a
wrapper handler above the main black-box barrier and becomes the precondition in the
body of this wrapper handler.

Let-binding for variables. We added a proper syntax for binding a variable to a term,
to avoid writing anonymous handler applications ((𝑥:𝜏) → 𝑒) 𝑠. The new construction
is written 𝑒 / 𝑥:𝜏 = 𝑠. We show its use in the example in Fig. 12 in the next section.

Mutable state. Our implementation supports mutable variables (references) that can
be allocated, modified, and passed as arguments to handlers. References are alias-free,
which means that is forbidden to pass a statically accessible reference as an argument or
to pass the same reference argument twice. Each handler is annotated with a pre-write
clause, which lists the references in its lexical scope that might be modified before the
handler is executed. For example, here is the prototype of a handler that increments an
integer reference received as argument and returns its previous value:

incr (&r: int) (return [r] (p: int))

The pre-write annotation [r] for the return outcome signifies that the code that calls
return—namely, the incr handler—may change the value of r before the call. Pre-
write annotations are automatically inferred for defined handlers and their continuation
parameters. However, we do not infer them for the higher-order outcomes (i.e., contin-
uation parameters of a continuation parameter).

The code with references is translated into pure Coma via a fine-grained monadic
transformation, during which the references in the pre-write annotations become addi-
tional term parameters. In the example above, after translation, incr would return to the
caller the updated value of r along with its previous value in p.

To capture the pre-state of references, we admit let-bindings in handler prototypes.
The full prototype of incr, together with its specification, is as follows:

incr (&r: int) [o: int = r] (return [r] (p: int) { r = o + 1 ∧ p = o })
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Fig. 10: VC generation time: Coma vs Why3 (lower values favor Coma).

Specification extraction. Given a first-order handler, Coma can produce, on request,
the logical predicates that represent its pre- and postconditions. Consider the following
handler which returns the value stored in the root node of a non-empty tree:

getRoot (t: tree) (return (v: elt)) =
unTree t ((_: tree) (u: elt) (_: tree) → return u) fail

The caller VC of getRoot, for a given tree t and continuation return, is the recipe

(∀lvr. t = Node l v r → return v) ∧ (t = Empty → 0) (★)

To compute the precondition of getRoot, we merely need to instantiate return with a
neutral recipe λx.♮0. After evaluation and simplification, we obtain t ≠ Empty.

To compute the postcondition, we neutralize the recipe (★), eliminating the subgoals
that belong to the precondition, and instantiate return with the recipe λx.z = x → 0,
where z is fresh. After evaluation, we obtain ∀lvr. t = Node l v r → z = v → ⊥,
which is equivalent to ¬(∃lr. t = Node l z r). This last formula is exactly the negated
postcondition of getRoot, where z denotes the returned value.

This procedure works in a similar way to subgoal factorization discussed in Sec. 3.
It is easily extended to handlers with multiple outcomes, producing a separate postcon-
dition for each of them.

Benchmarks. We evaluated the performance of our VC generator using the Creusot
test suite2. Creusot switched its VC generation back-end from Why3 to Coma at
release 0.2. We used the Rust files from the test suite that did not change during the
switch (235 files). For each of those files, we measured the VC generation time with both
back-ends and excluded those where the absolute difference was smaller than the sum
of two standard deviations. For the 33 remaining files, Fig. 10 shows the relative and the
absolute time difference (black and white bars, respectively). The negative values in the
chart are where the VCgen of Coma is faster than that of Why3, which is the case for
all but one test file. For a third of the tests, Coma was more than 50% faster.

2 This evaluation can be reproduced using the instructions in the Zenodo archive available online
at https://doi.org/10.5281/zenodo.14766822.

https://doi.org/10.5281/zenodo.14766822
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type regexp = Empty | Char of char | Alt of regexp * regexp
| Epsilon | Star of regexp | Concat of regexp * regexp

let accept (r: regexp) (s: string): bool =
let n = String.length s in
let rec a (r: regexp) (i: int) (k: int → unit): unit = match r with

| Empty → ()
| Epsilon → k i
| Char c → if i < n && s.[i] = c then k (i + 1)
| Alt (r1, r2) → a r1 i k; a r2 i k
| Concat (r1, r2) → a r1 i (fun j → a r2 j k)
| Star r1 → k i; a r1 i (fun j → if i < j then a r j k) in

try a r 0 (fun j → if j = n then raise Exit); false with Exit → true

Fig. 11: Regular expression engine in OCaml.

accept (r: regexp) (s: string) (return (b: bool))
= a r 0 (j h → if (j = n) (→ return true) h) (→ return false)

/ a (r: regexp) (i: int) (k (j: int) (h)) (o)
= unRe r empty eps char alt cat star

/ empty = o
/ eps = k i o
/ char c = if (i < n && s[i] = c) (k (i + 1) o) o
/ alt r1 r2 = a r1 i k (→ a r2 i k o)
/ cat r1 r2 = a r1 i (j h → a r2 j k h) o
/ star r1 = k i (→ a r1 i (j h → if (i < j) (→ a r j k h) h) o)

/ n: int = length s

Fig. 12: Regular expression engine in Coma.

6 Case Study: Regular Expression Processing

In this section, we demonstrate the use of Coma by verifying a small, yet non-trivial
OCaml program, that uses higher-order functions, exceptions, and requires giving spec-
ification to closures in order to be verified. Figure 11 shows a function accept that
checks if a string s is recognized by a regular expression r. The code traverses the string
with a recursive function a, which takes three parameters: a current regexp r, an integer
index i, and a continuation k. This function tries to match a substring s[i..j) with r,
and then applies the continuation k to index j to proceed with the matching of s[j..).
If no such j exists, function a returns the unit value (). The initial continuation passed
to function a signals a success by raising the predefined exception Exit.

Figure 12 contains a Coma version of the accept function, which can be obtained
by a mechanical CPS-translation of the OCaml code. The accept handler has a return
outcome that receives the Boolean computation result. The local handler a has a con-
tinuation o, that corresponds to the normal outcome of the original OCaml function.
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predicate cons (s: string) (r: regexp) (ck: int → bool) (i: int) =
exists j. i ≤ j ≤ length s ∧ mem s[i..j] r ∧ ck j

accept (r: regexp) (s: string) (return (b: bool) { b ↔ mem s r })
= a r 0 (j ↦→ j = n) (j h → if (j = n) (→ return true) h) (→ return false)
/ a (r: regexp) (i: int) (ck: int → bool) { 0 ≤ i ≤ n }

(k (j: int) { mem s[i..j] r ∧ i ≤ j ≤ n } (h { not (ck j)}))
(o { not (cons s r ck i) })

= unRe r empty eps char alt cat star
/ empty = o
/ eps = k i o
/ char c = if (i < n && s[i] = c) (k (i + 1) o) o
/ alt r1 r2 = a r1 i ck k (→ a r2 i ck k o)
/ cat r1 r2 = a r1 i (j ↦→ cons s r2 ck j) (j h → a r2 j ck k h) o
/ star r1 = k i (→ a r1 i (j ↦→ i < j ∧ cons s r ck j)

(j h → if (i < j) (→ a r j ck k h) h) o)
/ n: int = length s

Fig. 13: Regular expression engine in Coma, with specification.

Finally, the continuation k is transformed itself into CPS-style, and thus has its own
outcome, named h. Another way to look at this code is to interpret k and o as success
and error/backtrack continuations, respectively, as in a double-barreled CPS [18]. The
pattern-matching on the regular expression r is performed using a library handler unRe
similar to the unTree handler.

To verify this program, we need to add specifications. Figure 13 contains a version
of accept with added preconditions (in cyan) and ghost parameters (in gray). As
explained in Section 5, specification annotations in handler prototypes are automatically
desugared into assertions, black-box barriers, and wrapper handlers. The postcondition
of accept (i.e., the precondition of return) uses a built-in logical predicate mem, where
mem s r holds if and only if the string s belongs to the language of r.

We add a ghost parameter ck to handler a for the purpose of its specification. Note
that the current implementation of Coma does not provide any special treatment for
ghost code and data. In future, we plan to introduce the necessary checks that ensure that
ghost computations do not interfere with the observable part of the program. As in the
OCaml code, handler a tries to match a substring s[i..j) with r, and then applies the
continuation k to index j to proceed with the matching of s[j..). The ck parameter is
a first-class predicate which characterizes the index j passed to k. The cons predicate,
declared on top of the figure, is a shortcut to simplify annotations.

In addition to the annotations given in Fig. 13, we have also instrumented the Coma
code to verify the termination of handler a, as described in Section 4. In this case, the
variant is a pair ( |s| − i, r), ordered lexicographically: namely, we either progress in
string s or we move to a smaller regular expression. When the VC for handler accept
is sent to Why3, it is split into 44 individual proof tasks which are easily discharged by
the SMT solvers Z3 [4] and Alt-Ergo [3].
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# sort the bits of %rdi using ``I can't believe it can sort''
sortbits:

mov %rdi, %rax
mov $0x8000000000000000, %rdi

loop1: #@ invariant pop(rdi) = 1 ∧ pop(rax) = pop(rdi@sortbits)
mov $0x8000000000000000, %rsi

loop2: #@ invariant pop(rsi) = 1 ∧ pop(rax) = pop(rdi@sortbits)
mov %rax, %rcx # if !(rax & rdi)
and %rdi, %rcx
jnz cont2

test2: mov %rax, %rcx # and (rax & rsi)
and %rsi, %rcx
jz cont2

swap: or %rdi, %rax # then swap bits
andn %rax, %rsi, %rax

cont2: shr $1, %rsi
jnz loop2

cont1: shr $1, %rdi
jnz loop1
#@ assert pop(rax) = pop(rdi@sortbits)
ret

Fig. 14: Example of verified x86-64 code.

7 Case Study: Verified Assembly Code

We believe that Coma is a suitable intermediate language for the verification of unstruc-
tured programs. As a proof of concept, we have built a prototype tool for the deductive
verification of x86-64 assembly programs. The input of the tool is assembly code an-
notated with assumptions, assertions, and loop invariants. Figure 14 shows the x86-64
assembly code for a function sortbits that sorts the bits of a 64-bit integer using the
“I can’t believe it can sort” algorithm by Fung [8]. We use the AT&T syntax, with the
destination operand on the right. For instance, mov 𝐴, 𝐵 copies the register 𝐴 into 𝐵, and
andn 𝐴, 𝐵, 𝐶 computes 𝐴∧¬𝐵 and stores it in 𝐶. Integer literals start with a $ sign. The
code contains unnecessary labels (e.g., test2), which are only introduced to simplify
the forthcoming explanations.

Function sortbits receives an integer in the rdi register and returns an integer in
the rax register, with the same number of 1 bits, which are moved to the least significant
positions. The code iterates over all pairs of bits 0 ≤ 𝑖, 𝑗 < 64, using registers rdi and
rsi, with two nested loops. Whenever the bit 𝑖 is clear and the bit 𝑗 is set, the two
bits are swapped. (It is not obvious why this sorting procedure is correct; see Fung’s
paper for an explanation.) The code contains logical annotations as special comments:
namely, two loop invariants and one assertion before the function end. Here, we only
show that the population count remains constant (using a logical function pop), but we
do not show that bits are indeed sorted. We use the notation rdi@sortbits to refer to
the value of the rdi register at function entry.
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sortbits

loop1

loop2 test2

swapcont2

cont1

(a) Control flow of sortbits.

sortbits &rax &rcx &rsi &rdi &flags [rdi0=rdi]
= [...]
loop1
/ loop1 =

{ pop(rdi) = 1 ∧ pop(rax) = pop(rdi0) }
(↑ [...] loop2

/ loop2 =
{ pop(rsi) = 1 ∧ pop(rax) = pop(rdi0) }
(↑ [...] if b0 cont2 test2

/ test2 =
([...] if b1 cont2 swap
/ swap = [...] cont2)

/ cont2 =
([...] if b2 loop2 cont1
/ cont1 =

([...] if b3 loop1 exit
/ exit = { pop(rax) = pop(rdi0) }
halt))))

(b) Structure of the Coma code for sortbits.

Fig. 15: Compilation passes for sortbits.

Our tool parses the code and its annotations, and starts with building its control-flow
graph (depicted in Fig. 15a). Then, it computes the dominator tree, the entry point being
the function entry. A basic block 𝐴 dominates a block 𝐵 whenever any path from the
entry to 𝐵 traverses 𝐴. For instance, block loop2 dominates block test2, which itself
dominates swap2. Finally, our tool builds a Coma code that follows the structure of the
dominator tree. In this way, we do not need to repeat the outer invariant in the inner loop
for variables that are not modified. For instance, the handler swap2 is a local definition
in handler test2, which is itself a local definition in handler loop2. Each invariant is
translated into an assertion followed by a barrier. Figure 15b shows the structure of the
Coma code for sortbits. For an easier reading, we omit type annotations and we have
left only what relates to control-flow and specification. Conditional jumps are translated
using the primitive if (and suitable Boolean conditions b𝑖), and unconditional jumps
are handler calls. Parts where references are modified are written “[...]” for clarity.
The translated code relies on our Why3 model of a fragment of the x86-64 instruction
set. For instance, the instruction andn is translated into a Coma reference assignment
&rax ← andn rax rsi, where the logical function andn is defined in the accompanying
Why3 library.

The Coma back-end computes the VC for the code in Fig. 15b, and sends it to Why3.
There it is split into 5 proof tasks— two instances of invariant initialization, two instances
of invariant preservation, and the final postcondition—which are automatically proved
by Z3 and Alt-Ergo.
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8 Related work

To our knowledge, no deductive verification system features explicit abstraction barriers
in the style of Coma. Compared to the widely used intermediate verification languages
like Boogie [13], Viper [14] or WhyML [6], Coma is a smaller language, with fewer
constructs and a simpler VC generator. Still, we are not aware of an autoactive program
verifier that would admit the higher-order regexp example from Section 6. To handle
stateful computations, Coma implements first-class alias-free mutable variables, which
is close to what is provided by Boogie and WhyML. Viper, in comparison, offers a
significantly more powerful ownership-based reasoning framework.

There is a natural connection between the weakest-precondition calculus and the CPS
transformation, the former being a predicate transformer and the latter a structurally simi-
lar code transformer. This connection was first studied on a minimal imperative language
by Jensen [9]. This work was later extended with exception handling and goto statement
by Audebaud and Zucca [1], and furthermore, with recursion, higher-order functions, and
side effects by Kura [11]. A predicate transformer called the Dijkstra monad, introduced
by Swamy et al. [17] and used to verify higher-order and effectful F★ programs, also
highlights this connection. Coma exploits in a similar manner the relation between the
continuation-based style and the WP computation. Explicit abstraction barriers allow us
to verify recursive code without computing a fixed point of its verification condition.

The CFML tool developed by Charguéraud [2] serves for interactive verification of
higher-order stateful programs, written in a subset of OCaml. Programs are translated
into so-called characteristic formulas, which essentially capture the weakest precondition
of the programs, with respect to a shallow embedding of separation logic in Coq.
Specifications are proved in the form of lemmas derived from characteristic formulae.
Unlike Coma, or other VC-based program verifiers, the program logic rules of CFML
have to be applied manually in the course of an interactive Coq proof. Assertions
and invariants are provided as the proof progresses, which limits the possibilities for
automation. On the other hand, CFML offers a greater flexibility in stating properties of
program code, such as verifying a given function against two different contracts.

9 Conclusion

We presented Coma, a higher-order IVL with explicit abstraction barriers that can be
placed inside function definitions to make the exposed part of the computation appear
in the specification. This allows us to write specifications in a more concise and flexible
way, without having to manually translate executable code into logical specification.

In the future, we consider adding the mechanisms of ownership and borrowing to
handle the mutable state, and using prophecy variables in verification conditions. We are
also interested in supporting more advanced control structures, such as iterators, corou-
tines, and algebraic effects. We consider an alternative VC rule, where an above-barrier
subhandler definition is verified at the callee site rather than the caller site. In certain
programs with nested loops, like the sortbits example from Sec. 7, this allows us to
move all invariants into inner loops, avoiding repetition and reducing specification bur-
den. Finally, we continue to improve the efficiency of our implementation, in particular
the recipe evaluation engine and the subgoal factorization heuristics.
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