Explicit Abstraction Barrier for Autoactive Verification

Paul Patault
Université Paris-Saclay
Laboratoire Méthodes Formelles
Gif-sur-Yvette, France
paul.patault@Imf.cnrs.fr

Abstract

Coma is a verification language that allows the programmer
to decide which part of a function implementation is visible
to (and verified by) the caller, and which part is hidden from
the caller and verified at the definition site.

In this paper, we show through a series of examples how
this functionality allows for extra flexibility, leading to more
concise and natural specifications—if we write them at all.

1 Coma

In deductive program verification, to prove the correctness
of a function, we assume its precondition and verify that the
postcondition holds on the returned value. Conversely, the
client of a function proves its precondition, which allows
it to obtain the postcondition on the result for free. This is
the traditional caller/callee duality. The tipping point is the
abstraction barrier, placed at the function boundary.

Coma [5] is an intermediate verification language (IVL)
which makes this barrier explicit. It is implemented on top
of the Wry3 [1] platform and reuses its logical libraries.
Moreover, Coma serves as the VCgen backend of the Rust
deductive verifier CREUSOT [2, 6] in the same way BOOGIE is
used by DAFNY [3, 4].

A ComMma program is written in continuation-passing style
(CPS). Let us take a simple example

let f (x:int) {3} (k:(y:int) {¢y} — L): L =e

We define a function f with body e. This function has a data
parameter X, a precondition ¢ and a continuation parame-
ter k. The continuation k itself has a data parameter y and a
precondition . Since CoMa programs are in CPS, functions
can only return to the caller by passing control to a continu-
ation provided by the caller. In the function body e, every
time we want to return a value v, we call k v. From a verifi-
cation perspective, the precondition ¢ of k must be proved
when the continuation is called—before getting out of f.
Therefore, in Coma, we do not need a dedicated construct
for postconditions: they are the preconditions of continua-
tions. Consequently, in the rest of this text, we use the term
postcondition to refer to the preconditions of continuations.

Continuation-passing style allows CoMA to have only a
few language constructions. Indeed, this form is expressive
enough to encode standard control structures. For exam-
ple, we can easily provide if-then-else statements with the
following primitive

7 o= (x:0)" {9} (k:im— L)*

f] fun m — e

eel|et
letrec’ frn: 1L =ceine
assert {¢p} e

hide e

Figure 1. Syntax of expressions.

val if (b: bool) (then: () { b } — 1)
(else: O {notbh 3} —> 1): L

This function takes one Boolean parameter and two contin-
uations: the first one requires the Boolean parameter to be
true, and the second one, false. For clarity, we denote the
empty list of parameter with ().

The concrete syntax of Coma, in its current version, is
designed to be parseable rather than readable. For the sake
of clarity, we adopt in this article a more natural syntax,
inspired by the OCaml language and presented in Figure 1.
The data terms, denoted ¢, are composed of variables, con-
stants, and pure total operations that have the same mean-
ing in the code and in the specification. Function signatures,
denoted 7, enumerate data parameters, preconditions, and
continuations parameters. The resulting type of a function
is always L (empty type) since it never returns but gives
control to a continuation. Expressions, denoted e, are com-
posed of local function definitions, anonymous functions,
and function applications. On top of that, an expression can
be prefixed by an assertion or hidden below an explicit ab-
straction barrier hide.

In this article, we show how making the abstraction bar-
rier explicit can be useful in program specification and ver-
ification. After a series of short examples in Section 2, we
develop a complete Sudoku solver in Section 3. The complete
Coma implementations can be found in the archive hosted
at https://doi.org/10.5281/zenodo.17279467.

2 Explicit abstraction barrier

In this section, we present several ways to use the explicit
abstraction barrier. From the VC generation point of view,
the barrier syntactically separates what is verified at the
definition site and what is verified at the call site. It means

https://doi.org/10.5281/zenodo.17279467

that the VC of the part of code above the barrier is inlined in
the VC of the caller. Conversely, the code below the barrier
is hidden from the caller and proved on the callee side.

In the listings below, we use the traditional syntax for if
statements and omit the types of data parameters when they
can be inferred.

Recursive function. Let us take the traditional recursive
computation of the Fibonacci sequence as our first example.
As the function is recursive, we must put a barrier inside its
definition, hiding all recursive calls. Otherwise, VC inlining
on the caller side would be non-terminating.

let rec fib (n: int)
(out: (r: int) { r = F(n) } - 1): L
= if n < @ then fail () else
if n < 2 then out n else
hide fib (n-2) (fun x —
fib (n-1) (fun y —
out (x+y)))

We define a function fib that takes two parameters: n is
index of the Fibonacci number to compute, and out is the
continuation. The continuation itself expects an integer pa-
rameter r, which represents the result of the computation.
The precondition of out mentions F, the mathematical defi-
nition of the Fibonacci function, assumed to be given.

The body of this function is a sequence of tests. If the
parameter n is negative, then we call the primitive fail
whose precondition is false. Otherwise, we can compute
Fibonacci as usual with one base case and two recursive calls.

To illustrate the caller-side VC, consider the expression

fib 42 (fun r — assert { r > 10® } halt ())

where the VC of the halt primitive is true. The verification
condition of this call is

(42 < 0 — false) A
(0 < 42 <2 — 42 = F(42)) A
(2 < 42 — VYr:int. r = F(42) — r > 10%)

The first part of the conjunction corresponds to the first
test. Then, the first call to out (above the barrier in fib)
is visible by the caller of fib. Therefore, the precondition
of out (namely, r = F(n)) must be instantiated and proved
by the caller. Finally, for the last part of the conjunction, what
is under the barrier in fib is invisible to the caller and the
latter recovers the postcondition of fib (the precondition of
its continuation) as a hypothesis to prove what comes next.
The VC of fib’s definition is as follows:

Yn:int. not n <@ — not n < 2 —
(n-2 < 0 — false) A
(0 £ n-2<2 —>n-2=F[n-2) A
(2 £ n-2 - V¥x:int. x = F(n-2) —
(n-1 < @ — false) A

Paul Patault

< n-1<2 - n-1=F(n-1) A

< n-1 - Vy:int. y = F(n-1) —
x +y = F(n))
The correctness of code above the barrier is assumed and
what comes after must be verified. It means that the calls
to fail and the first call to out with the initial n are not taken
into account here, because they are verified by the caller. We
merely recover the preconditions of the two else branches
on the path leading to the barrier. The first block of the
subsequent proof obligations corresponds to the VC of the
first recursive call on (n-2). Then, similar proof obligations
are generated by the second recursive call on (n-1). Finally,
the last line of the VC corresponds to the call of out.

No barrier. Another possibility is not placing the barrier
at all. When the function is not recursive, its code can always
be inlined at the call sites, and there is nothing to be verified
at the definition site.

This can be useful for simple functions whose contract,
if written explicitly, would be a reformulation of their code.
For example, consider Euclidian division:

let div (x y: int) (dbz: () — 1)
(k: (r: int) - 1): L
= if y = @ then dbz () else k (x / y)

We can hide the body of div behind a barrier and provide
preconditions for the continuation parameters:

(dbz: O {y=03 — 1)

(ki (reint) {y#0ATr=x/y 3} —> 1)
but this would add nothing to what is already in the imple-
mentation. It is simpler—and shorter—to leave this function
as is, completely transparent.

Consider the following caller of div:

div x y fail
(fun (r: int) — assert { r x y < x } halt ())

Its full verification condition comes from div’s body, inlined:
if y = @ then false else (x / y) *y < x

Here, false is the precondition of fail and the else branch
corresponds to the non-zero case.

Higher-order iteration. We show a function iteri that
iterates over an interval and calls code, given as a parameter,
on each integer between the two endpoints. The function
has the signature

let iteri (lo hi: int) (seen: int — bool)
(body: (i: int)
{lo<i<hi}
{Vj. lo< j<i—> seen j}
(continue: () { seeni } —» 1) — 1)
(out: O — L): L

Explicit Abstraction Barrier for Autoactive Verification

To be more precise, the loop goes through [1o. .hi[calling
the continuation body on each integer in between. We give
two preconditions to body: (1) its argument i must be a valid
index of the interval and (2) each integer processed before has
to validate the predicate seen. The continuation continue
represents what to do after each loop iteration. Therefore,
its precondition must be an assertion that holds after one
loop unrolling: the processed integer now belongs to the
integers seen. The definition of iteri uses an inner recursive
function loop to iterate from lo to hi.

let rec loop (i: int): L
=assert { lo < i}
assert { Vj. lo < j<i — seen j }
if i < hi
then hide body i (fun () — loop (i+1))
else out () in
loop 1o

Afterwards, we give control back to the main continua-
tion out. The continuation continue of body is used to store
what is done after one body execution: call back the loop
with i+1.

Notice that the principal continuation out does not have
a precondition. We could have written the contract of iteri
with

(out: () { Vj. lo < j<hi — seenj} — 1)

which is a valid and provable specification, but slightly re-
dundant.

There are two paths that lead to the call of out. First, if
the interval is empty: we have nothing that we can learn.
Otherwise, the interval is non-empty: out will be called
after several executions of body, which will give the caller
of iteri sufficient information.

Remark that iteri does not have any barrier in its defini-
tion. The entire VC of the definition of loop together with
its initial call will be inlined in the caller’s VC. This means
that we have nothing to prove at the definition site.

3 Application: Sudoku

Given a partial and non-contradictory Sudoku grid, we want
to find whether it can be completed up to a solution. In our
formalization, we represent a Sudoku grid as a sequence of
81 integers between 0 and 9, where 0 denotes an empty cell:

type sudoku = seq int

Two predicates are used to check the validity of grid indices
and filled cell values:

c < 81
v < 9

predicate bounds (c: int) = @
1

<
predicate filled (v: int) <

Now, we can define the predicates that state the validity of a
cell in a grid.

predicate same_zone (c1 c2: int) =
div ¢l 9 =divc2 9 Vv modcl 9 =modc29 V
(div (div ¢1 9) 3 = div (div c2 9) 3 A
div (mod c1 9) 3 = div (mod c2 9) 3)

predicate compatible (g: sudoku) (cl1 c2: int) =
cl # c2 A same_zone cl c2 — glcl1] # glc2]

predicate correct (g: sudoku) (c: int) =
bounds ¢ A filled g[c] A
VYc'. bounds ¢' — compatible g c c'

Now, we can define a function check that verifies if the
value in a given cell is consistent with the rest of the grid.

let check (g: sudoku) (c: int)
(ok: () { correct gc } — 1)
(ko: (O { not correct gc } — 1): L
= iteri 0 81
(fun (i:int) — bounds i A compatible g c i)
(fun (i:int) (continue: () — 1) —
if compatible g ¢ i then continue ()
else ko ())
ok

This function iterates through the cells of the grid, verifying
that they do not clash with the cell c. It calls its continua-
tion ko if it finds a conflict in the grid. Just like the iteri
function, check does not contain a barrier and so is verified
by its callers rather than at the definition site.

To verify a Sudoku solver with a backtracting procedure,
we need an invariant and correctness+completeness criteria.
The invariant of a recursive function is its precondition, and
correctness+completeness, its postcondition.

The following two predicates provide the invariant. A well-
formed grid is of length 81, filled with integers between 0
and 9, and none of its non-empty cells conflict with another.

predicate wf (g: sudoku) =
length g = 81 A
(Vi. bounds i — 0 < g[i]l < 9) A
(Vi. bounds i — filled g[i] — correct g i)

We also need a predicate to state the grid is filled up to a
given index:

predicate filled_upto (g: sudoku) (c: int) =
Vi. 0 < i < c — filled g[i]

Now, we can define what constitutes a successful search.
The extends predicates specifies if one grid is an extension
of another, and the solution predicate says that all the cells
in the grid are filled and compatible with each other.

predicate extends (gl g2: sudoku) =
Vi. bounds i — filled g1[i] — gl1[i] = g2[i]

predicate solution (g: sudoku) =
Vi. bounds i — correct g i

The completeness of the solver can be stated with the pred-
icate impossible meaning that no extension of the initial
grid is a solution.

predicate impossible (g: sudoku) =
Vg'. extends g g' — not solution g'

Now, we can write the main solver function:

let rec solve (g: sudoku) (c: int)
{wfgl}{0<c< 81 }{ filled_upto g c }
(ok: (g': sudoku)
{ extends g g' } { solution g' } — 1)
(ko: () { impossible g } — L1): L
= if ¢ = 81 then ok g else
if glc] # @ then solve g (c+1) ok ko else
iteri 1 10 (fun v — impossible glc«v])
(fun (v: int) (next: () —» 1) —
let g = glcev] in
check g ¢
(fun () — solve g (ct1) ok next)
next)
ko

We want to build, if exists, one solution that extends the
initial grid. The first argument g is the Sudoku grid to solve.
The second argument c represents the cell index that must be
filled during this call. This index must be between 0 and 81,
and g must be filled up to c. This function has two contin-
uation parameters: ok for the success, and ko for the error.
The last call to this function, when c is 81, can call the con-
tinuation ok, since the grid is full and well-formed, and thus
is a solution.

As with postconditions, the presence of preconditions
implicitly adds a barrier at the entry point of the function.
Consequently, solve’s definition contains a barrier and must
therefore be proved. Its VC is rather large, but it is easily
discharged by SMT solvers.

Last, the main function calls solve on the first cell.

let solve_main (g: sudoku) { wf g }
(ok: (g': sudoku)
{ extends g g' } { solution g' } — 1)
(ko: () { impossible g } — 1): L
= solve g @ ok ko

It has the trivial following verification condition:

Vg. wf g —
(wf g A (0 <0 < 81) Afilled_upto g 0) A
(Vg'. (extends g g' A solution g') —
(extends g g’ A solution g’)) A
(impossible g — impossible g)

Paul Patault

where the parts of the VC written in bold (resp. non-bold)
indicate the assumptions and goals coming from solve_main
(resp. solve).

This concludes our Sudoku solver verification that is to-
tally verified in less than a second.

4 Comparison

The same program can easily be written and verified in many
comparable IVLs. Let us take WaYML [1], a well-known
IVL with a fairly comprehensive surface language includ-
ing loops, algebraic data types, functions, exceptions, and
specification material such as assertions, preconditions and
postconditions.

The first essential difference is that the function iteri
simply cannot be written in WHYML, due to its higher-order
aspect. However, we can locally simulate it with a for loop.
For example, we can define check within the same logical
context:

let check (g: sudoku) (c: int) : bool
requires { bounds c }
requires { filled g[c] }
ensures { result < correct g c }
= for i = @ to 80 do
invariant { Vj. 0 < j <i —
not clash g ¢ j }
if clash g ¢ i then return false
done;
return true

There are two differences. Firstly, the construct for is part of
the language WHYML where the function iteri is defined in
Coma. Secondly, the WHYML definition requires a specifica-
tion and a proof, whereas in Coma its VC can be discharged
to the caller. In WaHYML, the function cannot obtain infor-
mation from the caller’s context, and we must provide it as
preconditions. In total, for the proof of the Sudoku solver,
WHYML requires 11 specification units instead of 9 in Coma.

We can conclude from these observations, brief but en-
lightening, that CoMA seems just as expressive as WHYML
while being more versatile.

5 Conclusion

We presented Coma (Section 1) and its explicit abstraction
barrier. We saw how this construct can simplify programs
and proofs by allowing, for example, some functions to be
inlined totally or partially (Section 2). Then, we applied these
principles to verify a Sudoku solver (Section 3). Finally, we
compared our solution to WHYML, a state-of-the-art IVL,
which can prove correct the same functions, but with a
weaker degree of freedom (Section 4).

Explicit Abstraction Barrier for Autoactive Verification

Acknowledgements

This research was supported, in part, by the ANR project
ANR-22-CE48-0013 “GOSPEL” and, in part, by the Décysif
project funded by the fle-de-France region and by the French
government in the context of “Plan France 2030”.

References

[1] Francois Bobot, Jean-Christophe Filliatre, Claude Marché, Guillaume
Melquiond, and Andrei Paskevich. 2011. The Why3 platform. https:
//www.why3.org/.

[2] Xavier Denis, Jacques-Henri Jourdan, and Claude Marché. 2022.
Creusot: a Foundry for the Deductive Verication of Rust Programs.

(5]

(6]

In International Conference on Formal Engineering Methods - ICFEM.
Springer, Madrid, Spain.

K Rustan M Leino. 2008. This is Boogie 2. KRML Manuscript 178 (2008).
KRustan M Leino. 2010. Dafny: An automatic program verifier for func-
tional correctness. In International conference on logic for programming
artificial intelligence and reasoning. Springer, Springer, 348-370.
Andrei Paskevich, Paul Patault, and Jean-Christophe Filliatre. 2025.
Coma, an Intermediate Verification Language with Explicit Abstraction
Barriers. In Programming Languages and Systems, Viktor Vafeiadis (Ed.).
Springer Nature Switzerland, Cham, 175-201.

Paul Patault, Arnaud Golfouse, and Xavier Denis. 2025. Remonter
les barriéres pour ouvrir une cloture. In JFLA 2025 - 36es Journées
Francophones des Langages Applicatifs. Roiffé, France. https://inria.hal.
science/hal-04859517

https://www.why3.org/
https://www.why3.org/
https://inria.hal.science/hal-04859517
https://inria.hal.science/hal-04859517

	Abstract
	1 Coma
	2 Explicit abstraction barrier
	3 Application: Sudoku
	4 Comparison
	5 Conclusion
	Acknowledgements
	References

